سال 22، شماره 87 - ( 10-1402 )                   سال 22 شماره 87 صفحات 130-114 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdi M, Bagheri A, Moshtaghi N, Keykha Akhar F, Khadem A. Cell Suspension Culture of Lavender (Lavandula angustifolia) and the Influence of Methyl Jasmonate and Yeast Extract on Rosmarinic Acid Production. J. Med. Plants 2023; 22 (87) :114-130
URL: http://jmp.ir/article-1-3607-fa.html
یزدی محبوبه، باقری عبدالرضا، مشتاقی نسرین، کیخا آخر فاطمه، خادم آزاده. کشت سوسپانسیون سلولی اسطوخودوس (Lavandula angustifolia) و تأثیر متیل جاسمونات و عصاره مخمر بر تولید رزمارینیک اسید. فصلنامه گياهان دارویی. 1402; 22 (87) :114-130

URL: http://jmp.ir/article-1-3607-fa.html


1- گروه بیوتکنولوژی و به‎نژادی گیاهی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران
2- گروه بیوتکنولوژی و به‎نژادی گیاهی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران ، abagheri@um.ac.ir
3- گروه بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه جهرم، ایران
4- گروه بیوتکنولوژی گیاهان باغبانی، پژوهشکده بیوتکنولوژی صنعتی، جهاد دانشگاهی واحد خراسان رضوی، مشهد، ایران
چکیده:   (282 مشاهده)
مقدمه: کشت سوسپانسیون سلولی و محرک نقش مهمی در سنتز متابولیت‌های ثانویه فعال دارد. رزمارینیک اسید (RA) یکی از ترکیبات فعال موجود در اسانس اسطوخودوس با خواص آنتی‌اکسیدانی و ضد التهابی است. هدف: این تحقیق به منظور بررسی کارایی تولید RA در کشت سوسپانسیون Lavandula angustifolia از طریق تیمار با محرک متیل جاسمونات (MeJA) و عصاره مخمر (YE) انجام شد. روش بررسی: کشت سوسپانسیون سلولی در محیط مایع B5 با ترکیبات هورمونی مختلف استقرار یافت و تأثیر آنها بر رشد سلولی و تجمع RA مورد بررسی قرار گرفت. سپس تأثیر غلظت و مدت زمان تیمار با YE (0/1، 0/5  و 1 میلی‌گرم در لیتر، 1 ،3 و 6 روز پس از تیمار) و MeJA  ( 50 ،100 و 200 میکرومولار، 1 ،2 و 3 روز پس از تیمار) جداگانه و ترکیبی بر رشد سلولی و میزان رزمارینیک اسید درون سلولی و خارج سلولی مورد بررسی قرار گرفت. نتایج: نتایج HPLC نشان داد که بیشترین مقدار RA درون سلولی (17/03 میلی‌گرم بر گرم وزن خشک) 24 ساعت پس از افزودن 50 میکرومولار MeJA در ترکیب با 1 گرم در لیتر YE مشاهده شد که تقریباً 33 درصد بیشتر از مقدار این ماده در برگ بود. همچنین، تیمار ترکیبی به ترتیب منجر به 9 و 11 برابر افزایش رزمارینیک اسید در مقایسه با بکارگیری این دو محرک به تنهایی شد. همچنین، هر دو محرک به طور قابل‌توجهی بر مقدار RA خارج سلولی نسبت به شاهد تأثیر گذاشتند. نتیجه‌گیری: کاربرد محرک‌ها باعث افزایش تجمع زیست توده و RA در سلول‌های سوسپانسیون L. angustifolia می‌شود.
متن کامل [PDF 677 kb]   (85 دریافت)    
نوع مطالعه: پژوهشی | موضوع مقاله: گياهان دارویی
دریافت: 1402/10/28 | پذیرش: 1402/12/26 | انتشار: 1402/10/10

فهرست منابع
1. Gonçalves S and Romano A. Production of plant secondary metabolites by using biotechnological tools. In: Vijayakumar R and Raja SS. Secondary Metabolites: Sources and Applications. London: BoD-Books on Demand; 2018: 81-99. [DOI:10.5772/intechopen.76414]
2. Khorasaninejad S, Mousavi A, Soltanloo H, Hemmati Kh and Khalighi A. The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Appl. Sci. J. 2010; 11: 1403-1407.
3. Shekarchi M, Hajimehdipoor H, Saeidnia, S, Gohari AR and Pirali Hamedani M. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn. Mag. 2012; 8(29): 37-41. [DOI:10.4103/0973-1296.93316]
4. Khojasteh A, Mirjalili MH, Alcalde MA, Cusido RM, Eibl R and Palazon J. Powerful plant antioxidants: A new biosustainable approach to the production of rosmarinic acid. Antioxidants. 2020; 9(12): 1273. [DOI:10.3390/antiox9121273]
5. Stanojevic L, Stankovic M, Cakic M, Nikolic V, Nikolic L, Ilic D and Radulovic N. The effect of hydrodistillation techniques on yield, kinetics, composition and antimicrobial activity of essential oils from flowers of Lavandula officinalis L. Hem. Ind. 2011; 65(4): 455-463. [DOI:10.2298/HEMIND110129047S]
6. Talic S, Odak I, Boras MM, Smoljan A and Bevanda AM. Essential oil and extracts from Lavandula angustifolia Mill. cultivated in Bosnia and Herzegovina: Antioxidant activity and acetylcholinesterase inhibition. IJPBP. 2023; 3(1): 95-103. [DOI:10.29228/ijpbp.21]
7. Espinosa-Leal CA, Puente-Garza CA and García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta. 2018; 248: 1-18. [DOI:10.1007/s00425-018-2910-1]
8. Kandoudi W and Németh-Zámboriné É. Stimulating secondary compound accumulation by elicitation: Is it a realistic tool in medicinal plants in vivo?. Phytochem. Rev. 2022; 21(6):2007-2025. [DOI:10.1007/s11101-022-09822-3]
9. Gomi K. Jasmonic acid pathway in plants 2.0. IJMS. 2021; 22(7): 3506. [DOI:10.3390/ijms22073506]
10. Matkowski A. Plant in vitro culture for the production of antioxidants- A review. Biotechnol. Adv. 2008; 26(6): 548-60. [DOI:10.1016/j.biotechadv.2008.07.001]
11. Szabo E, Thelen A and Petersen M. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep. 1999; 18: 485-489. [DOI:10.1007/s002990050608]
12. Georgiev MI, Kuzeva SL, Pavlov AI, Kovacheva EG and Ilieva MP. Elicitation of rosmarinic acid by Lavandula vera MM cell suspension culture with abiotic elicitors. World J. Microbiol. Biotechnol. 2007; 23: 301-304. [DOI:10.1007/s11274-006-9214-5]
13. Zhao JL, Zhou LG and Wu JY. Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl. Microbiol. Biotechnol. 2010; 87: 137-144. [DOI:10.1007/s00253-010-2443-4]
14. Krzyzanowska J, Czubacka A, Pecio L, Przybys M, Doroszewska T, Stochmal A and Oleszek W. The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. PCTOC. 2012; 108: 73-81. [DOI:10.1007/s11240-011-0014-8]
15. Khojasteh A, Mirjalili MH, Palazon J, Eibl R and Cusido RM. Methyl jasmonate enhanced production of rosmarinic acid in cell cultures of Satureja khuzistanica in a bioreactor. Eng. Life Sci. 2016; 16(8): 740-749. [DOI:10.1002/elsc.201600064]
16. Khoshsokhan F, Babalar M, Salami SA, Sheikhakbari-Mehr R and Mirjalili MH. An efficient protocol for production of rosmarinic acid in Salvia nemorosa L. In Vitro Cell. Dev. Biol. Plant. 2023; 59: 298-314. [DOI:10.1007/s11627-023-10328-6]
17. Sumaryono W, Proksch P, Hartmann T, Nimtz M and Wray V. Induction of rosmarinic acid accumulation in cell suspension cultures of Orthosiphon aristatus after treatment with yeast extract. Phyrochem. 1991; 30(10): 3267-3271. [DOI:10.1016/0031-9422(91)83190-V]
18. Sanchez-Sampedro MA, Fernandez-T́arrago J and Corchete P. Yeast extract and methyl jasmonate induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J. Biotechnol. 2005; 119:60-69. [DOI:10.1016/j.jbiotec.2005.06.012]
19. Hakkim FL, Kalyani S, Essa M, Girija S and Song H. Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. IJBMR. 2011; 2(4): 1070-1074.
20. Park WT, Arasu MV, Al-Dhabi NA, Yeo SK, Jeon J, Park JS, Lee SY and Park SU. Yeast extract and silver nitrate induce the expression of phenylpropanoid biosynthetic genes and induce the accumulation of rosmarinic acid in Agastache rugosa cell culture. Mol. 2016; 21(4): 426. [DOI:10.3390/molecules21040426]
21. Gonçalves S, Mansinhos I, Rodríguez-Solana R, Pérez-Santín E, Coelho N and Romano A. Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Ind. Crops Prod. 2019; 137: 214-220. [DOI:10.1016/j.indcrop.2019.04.071]
22. Gamborg OL, Miller R and Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968; 50(1): 151-158. [DOI:10.1016/0014-4827(68)90403-5]
23. Murashige T and Skoog F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant. 1962; 15(3): 473-497. [DOI:10.1111/j.1399-3054.1962.tb08052.x]
24. Behbahani M, Shanehsazzadeh M and Hessami MJ. Optimization of callus and cell suspension cultures of Barringtonia racemosa (Lecythidaceae family) for lycopene production. Sci. Agric. 2011; 68(1): 69-76. [DOI:10.1590/S0103-90162011000100011]
25. Sahraroo A, Babalar M, Mirjalili MH, Fattahi Moghaddam MR and Nejad Ebrahimi S. In-vitro callus induction and rosmarinic acid quantification in callus culture of Satureja khuzistanica Jamzad (Lamiaceae). Iran. J. Pharm. Res. 2014; 13(4): 1447-1456.
26. Wahyuni DK, Huda A, Faizah S, Purnobasuki H and Wardojo BPE. Effects of light, sucrose concentration and repetitive subculture on callus growth and medically important production in Justicia gendarussa Burm. F. Biotechnol. Rep. 2020; 27: e00473. [DOI:10.1016/j.btre.2020.e00473]
27. Suhartanto B, Astutik M, Umami N, Suseno N and Haq MS. The effect of explants and light conditions on callus induction of srikandi putih maize (Zea mays L.). IOP Conf. Ser. Earth Environ. Sci. 2022; 1001(1): 012006. [DOI:10.1088/1755-1315/1001/1/012006]
28. Bona CM, Santos GD and Biasi LA. Lavandula calli induction, growth curve and cell suspension formation. Rev. Bras. de Cie. Agra. 2012; 7(1): 17-23. [DOI:10.5039/agraria.v7i1a1121]
29. Mahood HE, Sarropoulou V and Tzatzani TT. Effect of explant type (leaf, stem) and 2, 4-D concentration on callus induction: Influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures. BIOB. 2022; 9(1):1-14. [DOI:10.1186/s40643-022-00588-2]
30. Li P, Mou Y, Shan T, Xu J, Li Y, Lu S and Zhou L. Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis. Mol. 2011; 16(11): 9003-9016. [DOI:10.3390/molecules16119003]
31. Pourianezhad F, Rahnama H, Mousavi A, Khosrowshahli M and Mafakheri S. Parthenolide production in cell suspension culture of feverfew. BIOB. 2019; 6(23): 1-7. [DOI:10.1186/s40643-019-0258-4]
32. Smetanska I. Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UE, Nevoigt E. Food Biotechnology. Advances in Biochemical Engineering/ Biotechnology. Berlin: Springer; 2008; 187-228. [DOI:10.1007/10_2008_103]
33. Fakhari S, Sharifi M, Yousefzadi M and Beshamgan E. Effect of some phytohormones on podophyllotoxin production in cell and plantlets cultures of Linum album. JMPB. 2013; 2(1): 83-89.
34. Mishra MR, Srivastava RK and Akhtar N. Enhanced alkaloid production from cell culture system of Catharanthus roseus in combined effect of nutrient salts, sucrose and plant growth regulators. J. Biotechnol. Biomed. Scie. 2018; 1(4): 14-34. [DOI:10.14302/issn.2576-6694.jbbs-18-2475]
35. Veerashree V, Anuradha CM and Kumar V. Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. Br. PCTOC. 2012; 108(1): 27-35. [DOI:10.1007/s11240-011-0008-6]
36. Wang J, Qian J, Yao L and Lu Y. Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. BIOB. 2015; 2(5): 1-9. [DOI:10.1186/s40643-014-0033-5]
37. Ali M, Abbasi BH and Ali GS. Elicitation of antioxidant secondary metabolites with jasmonates and gibberellic acid in cell suspension cultures of Artemisia absinthium L. PCTOC. 2015; 120: 1099-1106. [DOI:10.1007/s11240-014-0666-2]
38. Andi SA, Gholami M, Ford CM and Maskani F. The effect of light, phenylalanine and methyl jasmonate, alone or in combination, on growth and secondary metabolism in cell suspension cultures of Vitis vinifera. J. Photochem. Photobiol. 2019; 199: 111625. [DOI:10.1016/j.jphotobiol.2019.111625]
39. Rodriguez-Sánchez LK, Pérez-Bernal JE, Santamaría-Torres MA, Marquínez-Casas X, Cuca-Suárez LE, Prieto-Rodríguez JA and Patiño-Ladino OJ. Effect of methyl jasmonate and salicylic acid on the production of metabolites in cell suspensions cultures of Piper cumanense (Piperaceae). Biotechnol. Rep. 2020; 28: e00559. [DOI:10.1016/j.btre.2020.e00559]
40. Zhao J, Davis LC and Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005; 23: 283-333. [DOI:10.1016/j.biotechadv.2005.01.003]
41. Sahu R, Gangopadhyay M and Dewanjee S. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Solenostemon scutellarioides. Acta Physiol. Plant. 2013; 35: 1473-1481. [DOI:10.1007/s11738-012-1188-3]
42. Cheng Q, He Y, Li G, Liu Y, Gao W and Huang L. Effects of combined elicitors on tanshinone metabolic profiling and smcps expression in Salvia miltiorrhiza hairy root cultures. Mol. 2013; 18(7): 7473-7485. [DOI:10.3390/molecules18077473]
43. Firouzi A, Mohammadi SA, Khosrowchahli M, Movafeghi A and Hasanloo T. Enhancement of Silymarin production in cell culture of Silybum marianum (L) Gaertn by elicitation and precursor feeding. J. Herbs Spices Med. Plants. 2013; 19(3): 262-274. [DOI:10.1080/10496475.2013.791908]
44. Keykha F, Khadem A, Bagheri A, Sharifi A and Ameri M. Optimization of Lavender (Lavandula angustifolia) callus culture. Plant Tissue Cult. Biotechnol. 2014; 24(2): 279‐285. [DOI:10.3329/ptcb.v24i2.23561]
45. Xu H, Kim YK, Jin XJ, Lee SY and Park SU. Rosmarinic acid biosynthesis in callus and cell cultures of Agastache rugosa Kuntze. J. Med. Plant Res. 2008; 2: 237-241.
46. Kim JH, Han JE, Murthy HN, Kim JY, Kim MJ, Jeong TK and Park SY. Production of secondary metabolites from cell cultures of Sageretia thea (Osbeck) MC Johnst. using balloon-type bubble bioreactors. Plants. 2023; 12(6): 1390. [DOI:10.3390/plants12061390]
47. Debersac P, Vernevaut MF, Amiot MJ, Suschetet M and Siess MH. Effects of a water-soluble extract of rosemary and its purified component rosmarinic acid on xenobiotic-metabolizing enzymes in rat liver. FCT. 2001; 39(2): 109-117. [DOI:10.1016/S0278-6915(00)00117-4]
48. Zakerin S, Hajimehdipoor H, Mortazavi SA, Choopani R, Fahimi S, Sabetkasaei M and Tavakolifar F. A validated HPLC method for quantitation of rosmarinic acid in a polyherbal syrup. RJP. 2020; 7(2): 5-11.
49. Miclea I, Suhani A, Zahan M and Bunea A. Effect of Jasmonic acid and Salicylic acid on growth and biochemical composition of in-vitro-propagated Lavandula angustifolia Mill. Agron. 2020; 10(11): 1722. [DOI:10.3390/agronomy10111722]
50. Heydari HR, Chamani E and Esmaeilpour B. Effect of total nitrogen content and NH4+/NO3-ratio on biomass accumulation and secondary metabolite production in cell culture of Salvia nemorosa. IJGPB. 2020; 9(1): 17-2

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به فصلنامه علمی پژوهشی گیاهان دارویی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb