1. Rahamatalla A, Babiker E, Krishna A and Tinay AE. Changes in fatty acids composition during seed growth and physicochemical characteristics of oil extracted from four safflower cultivars. Plant Foods Hum. Nutr. 2001; 56: 385 - 95. [
DOI:10.1023/A:1011860810082]
2. Yeilaghi H, Arzani A, Ghaderian M, Fotovat R, Feizi M and Pourdad SS. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem. 2012; 130: 618 - 25. [
DOI:10.1016/j.foodchem.2011.07.085]
3. Khalid N, Khan RS, Hussain MI, Farooq M, Ahmad A and Ahmed I. A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient-A review. Trends Food Sci. Technol. 2017; 66: 176 - 86. [
DOI:10.1016/j.tifs.2017.06.009]
4. Jaleel CA, Gopi R, Sankar B, Gomathinayagam M and Panneerselvam R. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C. R. Biol. 2008; 331: 42 - 7. [
DOI:10.1016/j.crvi.2007.11.003]
5. Lum MS, Hanafi M, Rafii Y and Akmar A. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J. Anim. Plant Sci. 2014; 24: 1487 - 93.
6. Farooq M, Wahid A, Kobayashi N, Fujita D and Basra S. Plant drought stress: effects, mechanisms and management, Sustainable agriculture. Springer. 2009, pp. 153 - 88. [
DOI:10.1007/978-90-481-2666-8_12]
7. Martin D, Tholl D, Gershenzon J and Bohlmann J. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 2002; 129: 1003 - 18. [
DOI:10.1104/pp.011001]
8. Wu H, Wu X, Li Z, Duan L and Zhang M. Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. J. Plant Growth Regul. 2012; 31: 113 - 23. [
DOI:10.1007/s00344-011-9224-x]
9. Koutroubas SD and Papakosta DK. Seed filling patterns of safflower: Genotypic and seasonal variations and association with other agronomic traits. Ind. Crop. Prod. 2010; 31: 71 - 6. [
DOI:10.1016/j.indcrop.2009.09.014]
10. Ghassemi-Golezani, K and Hosseinzadeh-Mahootchi A. Improving physiological performance of safflower under salt stress by application of salicylic acid and jasmonic acid. WALIA J. 2015; 31: 104 - 9.
11. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248 - 54. [
DOI:10.1016/0003-2697(76)90527-3]
12. Lu S, Su W, Li H and Guo Z. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol. Biochem. 2009; 47: 132 - 8. [
DOI:10.1016/j.plaphy.2008.10.006]
13. Haluskova Lu, Valentovičová K, Huttová J, Mistrík I and Tamás L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol. Biochem. 2009; 47: 1069 - 74. [
DOI:10.1016/j.plaphy.2009.08.003]
14. Bates LS, Waldern RP and Treare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973; 39: 205 - 7. [
DOI:10.1007/BF00018060]
15. Vernieri P, Perata P, Armellini D, Bugnoli M, Presentini R, Lorenzi R, Eccarelli N, Alpi A and Tognoni F. Solid phase radioimmunoassay for the quantitation of abscisic acid in plant crude extracts using a new monoclonal antibody. J. Plant Physiol. 1989; 134: 441 - 6. [
DOI:10.1016/S0176-1617(89)80007-0]
16. Mafakheri S and Asghari B. Effect of Seaweed Extract, Humic Acid and Chemical Fertilizers on Morphological, Physiological and Biochemical Characteristics of Trigonella foenum-graecum L. J. Agric. Sci. Technol. 2018; 20: 1505 - 16.
17. Hama JR. Comparison of fatty acid profile changes between unroasted and roasted brown sesame (Sesamum indicum L.) seeds oil. Int. J. Food Prop. 2017; 20: 957 - 67. [
DOI:10.1080/10942912.2016.1190744]
18. Khan A and Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ. Exp. Bot. 2008; 63: 224 - 31. [
DOI:10.1016/j.envexpbot.2007.10.018]
19. Kumar RR, Karajol K and Naik G. Effect of polyethylene glycol induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Rec. Res. Sci. Technol. 2011; 3.
20. Hasheminasab H, Assad MT, Aliakbari A and Sahhafi SR. Influence of drought stress on oxidative damage and antioxidant defense systems in tolerant and susceptible wheat genotypes. J. Agric. Sci. 2012; 4: 1 - 20. [
DOI:10.5539/jas.v4n8p20]
21. Guo Y, Tian S, Liu S, Wang W and Sui N. Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica 2018; 1 - 12.
22. Jia X, Sun C, Li G, Li G, Chen G. Effects of progressive drought stress on the physiology, antioxidative enzymes and secondary metabolites of Radix Astragali. Acta Physiol. Plant. 2015; 37: 262. [
DOI:10.1007/s11738-015-2015-4]
23. Kheiry A, Tori H and Mortazavi N. Effects of drought stress and jasmonic acid elicitors on morphological and phytochemical characteristics of peppermint (Mentha piperita L.). Iran. J. Med. Aromatic Plants 2017; 33.
24. Alam MM, Nahar K, Hasanuzzaman M and Fujita M. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol. Rep. 2014; 8: 279 - 93. [
DOI:10.1007/s11816-014-0321-8]
25. Kuromori T, Seo M and Shinozaki K. ABA transport and plant water stress responses. Trends Plant Sci: 2018; 23 (6): 513-522. [
DOI:10.1016/j.tplants.2018.04.001]
26. Akula R and Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011; 6: 1720 - 31. [
DOI:10.4161/psb.6.11.17613]
27. Karker M, Falleh H, Msaada K, Smaoui A, Abdelly C, Legault J and Ksouri R. Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata. EXCLI J. 2016; 15: 297 - 307.
28. Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S and Panneerselvam R. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 2009; 31: 427 - 36. [
DOI:10.1007/s11738-009-0275-6]
29. Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R and Panneerselvam R. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf. B. Biointerfaces 2007; 60: 201 - 6. [
DOI:10.1016/j.colsurfb.2007.06.010]
30. Singh R, Gupta P, Khan F, Singh SK, Sanchita Mishra T, Kumar A, Dhawan SS and Shirke PA. Modulations in primary and secondary metabolic pathways and adjustment in physiological behaviour of Withania somnifera under drought stress. Plant Sci. 2018; 272: 42 - 54. [
DOI:10.1016/j.plantsci.2018.03.029]
31. Çoban Ö and Göktürk Baydar N. Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind. Crop. Prod. 2016; 86: 251 - 8. [
DOI:10.1016/j.indcrop.2016.03.049]
32. Złotek U, Szymanowska U, Karaś M, Świeca M. Antioxidative and anti-inflammatory potential of phenolics from purple basil (Ocimum basilicum L.) leaves induced by jasmonic, arachidonic and β-aminobutyric acid elicitation. Int. J. Food Sci. Technol. 2016; 51: 163 - 70. [
DOI:10.1111/ijfs.12970]
33. Nanos GD, Kazantzis I, Kefalas P, Petrakis C and Stavroulakis GG. Irrigation and harvest time affect almond kernel quality and composition. Sci. Hort. 2002; 96: 249 - 56. [
DOI:10.1016/S0304-4238(02)00078-X]
34. Nazari M, Mirlohi A and Majidi MM. Effects of drought stress on oil characteristics of Carthamus species. J. Am. Oil Chem. Soc. 2017; 94: 247 - 56. [
DOI:10.1007/s11746-016-2938-y]
35. Zhu Y, Taylor C, Sommer K, Wilkinson K and Wirthensohn M. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis). Food Chem. 2015; 173: 821 - 6. [
DOI:10.1016/j.foodchem.2014.10.108]