دوره 4، شماره 72 و S12 - ( ويژه‌نامه ۱2- ضميمه پاييز 1398 )                   جلد 4 شماره 72 و S12 صفحات 186-203 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi S, Hatami M, Ghorbanpour M. Effect of Seed Priming with Nanosilicon on Morpho-Physiological Characterestics, Quercetin Content and Antioxidant Capacity in Calendula officinalis L. under Drought Stress Conditions. J. Med. Plants. 2020; 4 (72) :186-203
URL: http://jmp.ir/article-1-2309-fa.html
رحیمی سعیده، حاتمی مهرناز، قربانپور منصور. تأثیر پیش تیمار بذر با نانو سیلیکون بر صفات مورفوفیزیولوژیکی، میزان کوئرستین و ظرفیت آنتی‌اکسیدانی گیاه دارویی همیشه‌بهار‌(Calendula officinalis L.) در شرایط تنش خشکی. فصلنامه گياهان دارویی. 1398; 4 (72) :186-203

URL: http://jmp.ir/article-1-2309-fa.html


1- گروه گیاهان دارویی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران
2- گروه گیاهان دارویی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران ، m-hatami@araku.ac.ir
چکیده:   (369 مشاهده)
مقدمه: سیلیکون دومین عنصر ساختاری در زمین است که در گیاهان علاوه بر القا فرآیندهای فیزیولوژیکی باعث مقاومت به تنش‌های زیستی و غیر‌زیستی می‌شود.
هدف: ﺑﺮرﺳﻲ پیش تیمار بذر با نانو ذرات سیلیکون ﺑﺮ ﺗﻐﻴﻴﺮات مورفولوژیکی، ﻓﻴﺰﻳﻮﻟﻮژﻳﻜﻲ، فنل و ﻓﻼوﻧﻮﺋﻴﺪ، میزان کوئرستین و ﻇﺮﻓﻴﺖ آﻧﺘﻲ‌اﻛﺴﻴﺪاﻧﻲ ﮔﻴﺎه دارویی همیشه بهار تحت ﺳﻄﻮح ﻣﺨﺘﻠﻒ ﺗﻨﺶ ﺧﺸﻜﻲ.
روش بررسی: اﻳﻦ آزﻣﺎﻳﺶ ﺑﻪ ﺻﻮرت ﻓﺎﻛﺘﻮرﻳﻞ در ﻗﺎﻟﺐ ﻃﺮح ﻛﺎملاً ﺗﺼﺎدﻓﻲ تحت سطوح مختلف تنش خشکی (25، 50، 75 و 100 درصد ظرفیت زراعی) اجرا و از نانو ذرات سیلیکون (0، 100، 200 و 500 میلی‌گرم بر لیتر) به عنوان ماده پیش تیمارکننده بذر استفاده شد.
ﻧﺘﺎﻳﺞ: ﻧﺘﺎﻳﺞ ﻧﺸﺎن داد ﻛﻪ سطوح تنش خشکی و پیش تیمار با نانو سیلیکون در غلظت‌های مختلف باعث تغییرات معنی‌دار (05/0 > P) بر صفات مورد ارزیابی شد. ﺑﻴﺸﺘﺮﻳﻦ ﻣﻴﺰان ﻓﻌﺎﻟﻴﺖ آﻧﺘﻲ‌اﻛﺴﻴﺪاﻧﻲ عصاره در گیاهان تحت پیش تیمار نانو سیلیکون در غلظت 200 میلی‌گرم بر لیتر و تنش 25 درصد ظرفیت زراعی مشاهده شد. اعمال تنش 50 درصد ظرفیت زراعی و پیش تیمار نانوسیلیکون در غلظت 100 میلی‌گرم در لیتر بیشترین اثر را بر میزان کوئرستین داشت. همچنین، بیشترین و کمترین میزان فلاونوئید کل به ترتیب در پیش تیمار بذر با نانو ذرات سلیکون در غلظت 200 میلی‌گرم بر لیتر و شاهد (بدون پیش تیمار) در تنش خشکی 25 درصد ظرفیت زراعی مشاهده شد.
ﻧﺘﻴﺠﻪ‌گیری: استفاده از نانو سیلیکون به صورت پیش تیمار در غلظت‌های کم (200 - 100 میلی‌گرم بر لیتر) و تنش خشکی متوسط (50 درصد ظرفیت زراعی) شاخص‌های فیزیولوژیکی و متابولیتی گیاه همیشه‌بهار را بهبود بخشید.
متن کامل [PDF 707 kb]   (89 دریافت)    
نوع مطالعه: پژوهشی | موضوع مقاله: گياهان دارویی
دریافت: ۱۳۹۷/۷/۱۶ | پذیرش: ۱۳۹۷/۱۰/۲۲

فهرست منابع
1. Torney F, Trewyn BG, Lin VSY, Wang K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nano Tech. 2007; 2: 295 - 300. [DOI:10.1038/nnano.2007.108]
2. Albulescu M, Alexa N, Cojan C. Calendula officinalis flowers, source of extracts with antioxidant activity. Ann. West Univ. Timisoara Ser Chem. 2004; 13 (2): 169-176.
3. Jan N, John R. Calendula officinalis -An Important Medicinal Plant with Potential Biological Properties. Proc. Indian Natn. Sci. Acad. 2017; 83: 769-787.
4. Shekari F, Baljani R, Saba J and Afsahi K. effect of priming with salicylic acid on the properties borage seedlings (Barago officinalis). J. Modern Agricultural Sci. 2010; 18: 47 - 53.
5. Demir Kaya M, Okcu G, Atak M A and Kolsarici O. Seed treatment to overcome salt and drought stress during germination in sunflower. European Journal of Agronomy 2006; 24: 291 - 5. [DOI:10.1016/j.eja.2005.08.001]
6. Masoudi P, Gezancheyan A, Jajarami V and Bozorgmehr A. Effect of seed treatment on germination and seedling vigor in three species of permanent grass under salinity stress. JAST. 2008; 22: 57 - 67.
7. Basra MAS, Ashraf M, Iqbal N, Khliq A and Ahmad R. Physiologycal and biochemical aspect of pre-sowing heat stress on cotton seed. SST. 2004; 32: 765 - 74. [DOI:10.15258/sst.2004.32.3.12]
8. Omidi H, Movahadi F and Movahadi S H. The effect of salicylic acid and scarification on germination characteristics and proline, protein and soluble carbohydrate content of Prosopis (Prosopis farcta L.) seedling under salt stress. Rang. Des. Res. 2012; 18: 608 - 23.
9. Siddique MRB, Hamid A and Islam MS. Drought stress effects on photosynthetic rate and leaf gas exchange of wheat. Botanical Bulletin of Academia Sinica. 1999; 40: 141 - 5.
10. Yordanov V and Tsoev T. Plant responses to drought, acclimation and stress tolerance. Photosynthica 2000; 38: 171 - 86. [DOI:10.1023/A:1007201411474]
11. Bhatt RM and Srinivasa-Rao NK. Influence of pod load on response of okra to water stress. Indian Journal Plant Physiol. 2005; 10: 54 - 9.
12. Hatami M, Kariman K and Ghorbanpour M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Science of the Total Environment 2016; 571: 275 - 91. [DOI:10.1016/j.scitotenv.2016.07.184]
13. Ghorbanpour M, Hatami M and Hatami M. Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application. Acta Agric. Slov. 2015; 105: 23 - 32. [DOI:10.14720/aas.2015.105.1.03]
14. Bao-Shan L, Shao-qi D, Chun-hui L, Li-jun F, Shu-chun Q, Min Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. Forest Res. 2004; 15: 138 - 40. [DOI:10.1007/BF02856749]
15. Siddiqui MH, Al-Whaibi MH, Sakran AM, Ali HM, Basalah MO, FaisalM, Alatar A and Al-Amri AA. Calcium-induced amelioration of boron toxicity in radish. J. Plant Growth Regul. 2013; 32: 61 - 71. [DOI:10.1007/s00344-012-9276-6]
16. Yinfeng X, Bo L, Qianqian Z, Chunxia Z, Kouping L and Gongsheng T. Effects of nano-TiO2 on photosynthetic characteristics of Indocalamus barbatus. J. Northeast Forest Uni. 2011; 39: 22 - 5.
17. Amira MS, Abdul Qados and Ansary EM. Influence of Silicon and Nano-Silicon on Germination, Growth and Yield of Faba Bean (Vicia faba L.) Under Salt Stress Conditions. American J. Experimental Agriculture 2015; 5 (6): 509 - 24. [DOI:10.9734/AJEA/2015/14109]
18. EL-Kady ME, El-Boray MS, Shalan AM and Lamiaa M. Effect of silicon dioxide nanoparticles on growth improvement of banana shoots in vitro within rooting stage. J. Plant Production, Mansoura Univ. 2017; 8 (9): 913 - 6. [DOI:10.21608/jpp.2017.40900]
19. Emam MM, Khattab HE, Helal NM and Deraz AE. Effect of selenium and siliconon yield quality of rice plant grown under drought stress. AJCS. 2014; 8: 596 - 605.
20. Hatami M, Hadian J and Ghorbanpour M. Mechanism's underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J. Hazardous Materials 2017; 324: 306 - 20. [DOI:10.1016/j.jhazmat.2016.10.064]
21. Baiazidi-Aghdam MT, Mohammadi H and Ghorbanpour M. Effects of nanoparticulateanatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz. J. Bot. 2016; 39: 139 - 46. [DOI:10.1007/s40415-015-0227-x]
22. Hatami M and Ghorbanpour M. Defense enzyme activities and biochemical variations of Pelargonium zonale in response to nanosilver application and dark storage. Turkish Journal of Biol. 2014; 38: 130 - 9. [DOI:10.3906/biy-1304-64]
23. Ferrat IL and Lova CJ. Relation between relative water content, Nitrogen pools and growth of Phaseolus vulgaris L. and P. acutifolius, A. Gray during water deficit. Crop Science 1999; 39: 467 - 74. [DOI:10.2135/cropsci1999.0011183X0039000200028x]
24. Karlidag H, Yildirim E and Turan M. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Science Agriculture 2009; 66 (2): 180 - 7. [DOI:10.1590/S0103-90162009000200006]
25. Porra RJ. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Res. 2002; 73: 149 - 56. [DOI:10.1023/A:1020470224740]
26. Sims DA and Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002; 81: 337 - 54. [DOI:10.1016/S0034-4257(02)00010-X]
27. Lichtenthaler HK and Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Transac. 1983; 11: 591 - 2. [DOI:10.1042/bst0110591]
28. Meda A, Lamien C, Romito E, Millogo M J and Nacoulma O G. Determination of the total phenolic, flavonoid and pralin contents in Burkina Fasan honey, as well as their scavenging activity. Food Chem. 2005; 91: 571 - 7. [DOI:10.1016/j.foodchem.2004.10.006]
29. Chang C, Yang M, Wen H and Chern J. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Food and Drug Analysis. 2002; 10: 178 - 82.
30. Shyu YS and Hwang LS. Antioxidant activity of the crude extract of lignin glycosides from unroasted Burma black sesame meal. Food Res. Int. 2002; 35: 357 - 65. [DOI:10.1016/S0963-9969(01)00130-2]
31. Osakabe Y, Osakabe K, Shinozaki K and Tran LSP. Response of plants to water stress. Front. Plant Sci. 2014; [DOI:10.3389/fpls.2014.00086]
32. Ahmed M, Hassan FU and Asif M. Amelioration of drought in sorghum (Sorghum bicolor L.) by silicon. Commun. Soil Sci. Plant Anal. 2014; 45: 470 - 86. [DOI:10.1080/00103624.2013.863907]
33. Emam MM, Khattab HE, Helal NM and Deraz AE. Effect of selenium and silicon on yield quality of rice plant grown under drought stress. AJCS. 2014; 8: 596 - 605.
34. Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M and Irshad MK. Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch. Agron. Soil Sci. 2015; [DOI:10.1080/03650340.2015.1028379]
35. Baiazidi-Aghdam MT, Mohammadi H, Ghorbanpour M. 2016. Effects of nanoparticulateanatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz J Bot. 39: 139-146. [DOI:10.1007/s40415-015-0227-x]
36. Da Silva Lobato AK, de Oliveira Neto CF, Marques DJ and Guedes EMS. Silicon: a benefic element to improve tolerance in plants exposed to water deficiency. INTECH Open Access Publisher. 2013. [DOI:10.5772/53765]
37. Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ. Silicon alleviates PEG-induced water deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron Crop Sci. 2012; 198: 14 - 26. [DOI:10.1111/j.1439-037X.2011.00486.x]
38. Putra ETS, Issukindarsyah T and Purwanto BH. Physiological responses of oil palm seedlings to the drought stress using boron and silicon applications. J. Agron. Doi. 2015; 10: 3923/ja.2015.
39. Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S and Chen Y. Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci. World J. doi. 2014; 10: 1155/2014/368694. [DOI:10.1155/2014/368694]
40. Gong H, Chen K. Theregulatoryrole of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol. Plant. 2012; 34: 1589 - 94. [DOI:10.1007/s11738-012-0954-6]
41. Shen X, Zhou Y, Duan L, Li Z, Eneji AE and Li J. Silicon effects on photosynthesis and antioxidant parameters of soybean seedling sunder drought and ultraviolet-B radiation. J. Plant Physiol. 2010; 167: 1248 - 52. [DOI:10.1016/j.jplph.2010.04.011]
42. Tarumingkeng RC and Coto Z. Effects of drought stress on growth and yield of soybean. Kisman. Science Philosopy Agricultural University. 2003, pp: 702.
43. Ashkavand P, Tabari M, Zarafshar M, Tom skova I and Struve D. Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Lesne Prace Badawcze. 2015; 76: 350 - 9. [DOI:10.1515/frp-2015-0034]
44. Blokhina O, Virolainen E and Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany 2003; 91: 179 - 94. [DOI:10.1093/aob/mcf118]
45. Sairam RK, Rao KV and Srivastava GC. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002; 163: 1037 - 46. [DOI:10.1016/S0168-9452(02)00278-9]
46. Gao X, Zou C, Wang L, Zhang F. Silicon improves water use efficiency in maize plants. J. Plant Nutrition. 2005; 27: 1457 - 70. [DOI:10.1081/PLN-200025865]
47. Maksimovic JD, Bogdanovic J, Maksimovic V and Nikolic M. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J. Plant Nutrition and Soil Sci. 2007; 170: 739 - 44. [DOI:10.1002/jpln.200700101]
48. Ghorbanpour M, Khaltabadi Farahani A.H, Hadian J. Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicology and Environmental Safety. 2018; 148: 910-922. [DOI:10.1016/j.ecoenv.2017.11.061]
49. Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C and Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochem. 2007; 45: 244 - 9. [DOI:10.1016/j.plaphy.2007.02.001]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به فصلنامه علمی پژوهشی گیاهان دارویی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Medicinal Plants

Designed & Developed by : Yektaweb