year 22, Issue 87 (12-2023)                   J. Med. Plants 2023, 22(87): 39-56 | Back to browse issues page

XML Persian Abstract Print

1- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran ,
Abstract:   (214 Views)
Background: Salvia tebesana Bunge, as an important herb in folk medicine, is distributed in limited geographical locations in the Middle East. Objective: In this study, three protic solvents, 80 % methanol, 80 % ethanol, and double-distilled water, were investigated to recover the phenolic constituents from S. tebesana extracts. Methods: The antioxidant activity (estimated by total antioxidant capacity, DPPH, and FRAP radical scavenging assays) and the content of phenols, ortho-diphenols, phenolic acids, flavonoids, flavonols, and proanthocyanidins of extracts from leaves and stems of S. tebesana were investigated. After selecting the best solvent, the samples were assayed for individual flavonoid compounds (apigenin, quercetin, myricetin, and rutin) by HPLC-PDA. Results: Different plant extracts demonstrated strong radical scavenging activities, and the leaf extract obtained by 80% methanol showed the highest antioxidant capacity. The same extract also exhibited the most ortho-diphenol, phenolic acid, flavonoid, and proanthocyanidin contents (1598.5 ± 46.2, 742.2 ± 41.3, 487.6 ± 21.9, and 350.1 ± 31.4 mg 100 g-1 DW sample, respectively), while 80 % ethanol extract of leaves gave the most phenolic and flavonol contents (2299.2 ± 47.3 and 359.1 ± 42.3 mg 100 g-1 DW sample, respectively). The high level of flavone apigenin (466.1 ± 11.1 µg g-1 DW) and flavonol rutin (348.6 ± 10.02 µg g-1 DW) were also found in methanol extracts of leaves and are reporting for the first time in S. tebesana. Conclusion: These findings warrant that S. tebesana, in particular the leaves, can be suggested as a natural preservative in dietary and medical applications with the potential to reduce oxidative stress.
Full-Text [PDF 2468 kb]   (199 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2023/08/20 | Accepted: 2023/11/29 | Published: 2023/12/31

1. Fotovvat M, Radjabian T and Saboora A. HPLC fingerprint of important phenolic compounds in some Salvia L. species from Iran. Rec. Nat. Prod. 2019; 13(1): 37-49. [DOI:10.25135/rnp.]
2. da Silva LRR, Ferreira OO, Cruz JN, Franco CJP, dos Anjos TO, Cascaes MM, da Costa WA, Andrade EHA and de Oliveira MS. Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities. Evid. Based Complementary Altern. Med. 2021; 1-18. [DOI:10.1155/2021/6748052]
3. Eghbaliferiz S, Emami SA, Tayarani-Najaran Z, Iranshahi M, Shakeri A, Hohmann J and Asili J. Cytotoxic diterpene quinones from Salvia tebesana Bunge. Fitoterapia 2018; 128: 97-101. [DOI:10.1016/j.fitote.2018.05.005]
4. Goldansaz SM, Hakimi Meybodi MH, Mirhosseini A and Mirjalili MH. Essential oil composition of Salvia tebesana bunge (Lamiaceae) from Iran. Rec. Nat. Prod. 2017; 11(3): 310-314.
5. Aramjoo H, Kiani Z and Eghbali S. Antihyperglycemic and hepatoprotective effects of Salvia tebesana Bunge in diabetic rats. Res. Pharm. Sci. 2022; 17(4): 410-416. [DOI:10.4103/1735-5362.350241]
6. Asili J, Tayarani-Najaran Z, Emami SA, Iranshahi M, Sahebkar AH and Eghbali S. Chemical composition, cytotoxic and Antibacterial activity of essential oil from aerial parts of Salvia tebesana Bunge. J. Essent. Oil Bear. Plant. 2021; 24(1): 31-39, [DOI:10.1080/0972060X.2021.1886996]
7. Eghbaliferiz S, Soheili V, Tayarani-Najaran Z and Asili J. Antimicrobial and cytotoxic activity of extracts from Salvia tebesana Bunge and Salvia sclareopsis Bornm cultivated in Iran. Physiol. Mol. Biol. Plant. 2019; 25(4): 1083-1089. [DOI:10.1007/s12298-019-00652-w]
8. Heshmati Afshar F, Delazar A, Nazemiyeh H, Esnaashari S and Bamdad Moghadam S. Comparison of the total phenol, flavonoid contents and antioxidant activity of methanolic extracts of Artemisia spicigera and A. splendens growing in Iran. Pharm. Sci. 2012; 18(3): 165-170.
9. Rezaie M, Farhoosh R, Iranshahi M, Sharif A and Golmohamadzadeh S. Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chem. 2015; 173: 577-583. [DOI:10.1016/j.foodchem.2014.10.081]
10. Hayouni EA, Abedrabba M, Bouix M and Hamdi M. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem. 2007; 105(3): 1126-1134. [DOI:10.1016/j.foodchem.2007.02.010]
11. Namvar K, Salehi EA and Mokhtarian N. Total phenolic compounds and antioxidant activity of Stachys turomanica. Biosci. J. (Uberlândia) 2018; 34(5): 1349-1356. [DOI:10.14393/BJ-v34n5a2018-41517]
12. Singleton VL, Orthofer R and Lamuela-Rvaentos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent. Meth. Enzymol. 1999; 299, 152-178. [DOI:10.1016/S0076-6879(99)99017-1]
13. Carrasco-Pancorbo A, Cerretani L, Bendini A, Segura-Carretero A, Gallina-Toschi T and Fernandez-Gutierrez A. Analytical determination of polyphenols in olive oils. J. Sep. Sci. 2005; 28(9-10): 837-858. [DOI:10.1002/jssc.200500032]
14. Matkowski A, Zielinska S, Oszmianski J and Lamer-Zarawska E. Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresour. Technol. 2008; 99(16): 7892-7896. [DOI:10.1016/j.biortech.2008.02.013]
15. Chang CC, Yang MH, Wen HM and Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002; 10(3): 178-182. [DOI:10.38212/2224-6614.2748]
16. Miliauskas G, Venskutonis PR and van Beek TA. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004; 85(2): 231-237. [DOI:10.1016/j.foodchem.2003.05.007]
17. Sun B, Ricardo-da-Silva JM and Spranger I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998; 46(10): 4267-4274. [DOI:10.1021/jf980366j]
18. Prieto P, Pineda M and Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 1999; 269(2): 337-341. [DOI:10.1006/abio.1999.4019]
19. Benzie IFF and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 1996; 239(1): 70-76. [DOI:10.1006/abio.1996.0292]
20. Fernández-Lorenzo JL, Ballester A and Rigueiro A. Phenolic content of microcuttings of adult chestnut along rooting induction. Plant Cell Tissue Organ Cult. 2005; 83: 153-159. [DOI:10.1007/s11240-005-4786-6]
21. Škerget M, Kotnik P, Hadolin M, Rižner Hraš A, Simonič M and Knez Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005; 89(2): 191-198. [DOI:10.1016/j.foodchem.2004.02.025]
22. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S and Ju YH. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014; 22(3): 296-302. [DOI:10.1016/j.jfda.2013.11.001]
23. Barchan A, Bakkali M, Arakrak A, Pagán R and Laglaoui A. The effects of solvents polarity on the phenolic contents and antioxidant activity of three Mentha species extracts. Int. J. Current Microbiol. App. Sci. 2014; 3(11): 399-412.
24. Snyder LR. Classification of the solvent properties of common liquids. J. Chromatogr. Sci. 1978; 16(6): 223-234. [DOI:10.1093/chromsci/16.6.223]
25. Fiore G, Nencini C, Cavallo F, Capasso A, Bader A, Giorgi G and Micheli L. In vitro antiproliferative effect of six Salvia species on human tumor cell lines. Phytother. Res. 2006; 20(8): 701-703. [DOI:10.1002/ptr.1911]
26. Alimpić A, Oaldje M, Matevski V, Marin PD and Duletić-Laušević S. Antioxidant activity and total phenolic and flavonoid contents of Salvia amplexicaulis Lam. extracts. Arch. Biol. Sci. 2014; 66(1): 307-316. [DOI:10.2298/ABS1401307A]
27. Končić MZ, Kremer D, Karlović K and Kosalec I. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol. 2010; 48(8-9): 2176-2180. [DOI:10.1016/j.fct.2010.05.025]
28. Wijekoon MMJO, Bhat R and Karim AA. Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. J. Food Compost. Anal. 2011; 24(4-5): 615-619. [DOI:10.1016/j.jfca.2010.09.018]
29. Alimpić Aradski A, Duletić Laušević S, Matevski V and Marin P. Antioxidant activity of Salvia jurisicii Košanin ethanol extracts. Bot. Serb. 2015; 39: 53-58.
30. Mohammedelnour AA, Mirghani MES, Kabbashi NA, Alam MZ, Musa KH and Abdullah A. Effect of solvent types on phenolics content and antioxidant activities of Acacia polyacantha gum. Int. Food Res. J. 2017; 24: 369- 377.
31. Medina-Torres N, Ayora-Talavera T, Espinosa-Andrews H, Sánchez-Contreras A and Pacheco N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agron. 2017; 7(3): 1-19. [DOI:10.3390/agronomy7030047]
32. Monteiro M, Santos RA, Iglesias P, Couto A, Serra CR, Gouvinhas I, Barros A, Oliva-Teles A, Enes P and Díaz-Rosales P. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macroand microalgae extracts. J. Appl. Phycol. 2020; 32: 349-362. [DOI:10.1007/s10811-019-01927-1]
33. Vella FM, Cautela D and Laratta B. Characterization of polyphenolic compounds in cantaloupe Melon by-products. Foods 2019; 8(6): 1-10. [DOI:10.3390/foods8060196]
34. Louaileche H, Zegane O and Keciri S. Ortho-diphenol content, Iron chelating and hydrogen peroxide scavenging properties of Algerian virgin olive oils. Agric. Food Sci. Environ. Sci. 2015; 1: 211-215.
35. Haminiuk CWI, Plata-Oviedo MSV, Mattos, GD, Carpes ST and Branco IG. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 2014; 51: 2862-2866. [DOI:10.1007/s13197-012-0759-z]
36. Riahi L, Chograni H, Elferchichi M, Zaouali Y, Zoghlami N and MLiki A. Variations in Tunisian wormwood essential oil profiles and phenolic contents between leaves and flowers and their effects on antioxidant activities. Ind. Crops Prod. 2013; 46: 290-296. [DOI:10.1016/j.indcrop.2013.01.036]
37. Kivrak S, Göktürk T, Kivrak I, Kaya E and Karababa E. Investigation of phenolic profiles and antioxidant activities of some Salvia species commonly grown in Southwest Anatolia using UPLC-ESI-MS/MS. Food Sci. Technol. 2019; 39(2): 423-431. [DOI:10.1590/fst.32017]
38. Karatoprak GS, Ilgün S and Kosar M. Antioxidant properties and phenolic composition of Salvia virgata Jacq. Turk. J. Pharml. Sci. 2016; 13(2): 87-104. [DOI:10.5505/tjps.2016.98608]
39. Amoussa AMO, Sanni A and Lagnika L. Antioxidant activity and total phenolic, flavonoid and flavonol contents of the bark extracts of Acacia ataxacantha. J. Pharmacogn. Phytochem. 2015; 4: 172-178.
40. Davarinejad GH, Taghizadeh SF and Asili J. Effect of different solvents on total phenolic contents and antioxidant activity of Zizyphus jujube miller fruits. J. Hortic. Sci. 2017; 31(1): 158-166.
41. Gu CH, Li H, Gandhi RB and Raghavan K. Grouping solvents by statistical analysis of solvent property parameters: Implication to polymorph screening. Int. J. Pharm. 2004; 283(1-2): 117-125. [DOI:10.1016/j.ijpharm.2004.06.021]
42. Ullah MA, Tungmunnithum D, Garros L, Drouet S, Hano C and Abbasi BH. Effect of ultraviolet-C radiation and melatonin stress on biosynthesis of antioxidant and antidiabetic metabolites produced in in vitro callus cultures of Lepidium sativum L. Int. J. Mol. Sci. 2019; 20(7): 1-19. [DOI:10.3390/ijms20071787]
43. Heydari HR, Chamani E and Esmaielpour B. Cell line selection through gamma irradiation combined with multi-walled carbon nanotubes elicitation enhanced phenolic compounds accumulation in Salvia nemorosa cell culture. Plant Cell, Tissue Organ Cult. 2020; 142: 353-367. [DOI:10.1007/s11240-020-01867-6]
44. Hemmati N, Cheniany M and Ganjeali A. Effect of plant growth regulators and explants on callus induction and study of antioxidant potentials and phenolic metabolites in Salvia tebesana Bunge. Bot. Serbica 2020; 44(2): 163-173. [DOI:10.2298/BOTSERB2002163H]
45. Salehi F, Arouiee H, Naghdi Badi H, Nemati S and Tolyat Abulhassani S. Evaluation of morphophysiological and phytochmical traits of different ecotypes of Salvia multicaulis Vahl. in Hamedan province, Iran. J. Med. Plants 2017; 16(64): 123-136.
46. Vosoughi N, Gomarian M, Ghasemi Pirbalouti AL, Khaghani S and Malekpoor F. Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Ind. Crops Prod. 2018; 117: 366-374. [DOI:10.1016/j.indcrop.2018.03.021]
47. Tepe B, Eminagaoglu O, Akpulat HA and Aydin E. Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia verticillata (L.) subsp. verticillata and S. verticillata (L.) subsp. amasiaca (Freyn & Bornm.) Bornm. Food Chem. 2007; 100(3): 985-989. [DOI:10.1016/j.foodchem.2005.10.062]
48. Dong J, Wan G and Liang Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol. 2010; 148(2-3): 99-104. [DOI:10.1016/j.jbiotec.2010.05.009]
49. Seal T. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J. Appl. Pharm. Sci. 2016; 6(2): 157-166. [DOI:10.7324/JAPS.2016.60225]
50. Jasicka-Misiak I, Poliwoda A, Petecka M, Buslovych O, Shlyapnikov VA and Wieczorek PP. Antioxidant Phenolic Compounds in Salvia officinalis L. and Salvia sclarea L. Ecol. Chem. Eng. S. 2018; 25(1): 133-142. [DOI:10.1515/eces-2018-0009]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.