Journal of Medicinal Plants Journal homepage: www.jmp.ir #### **Review Article** # Clinical antihypertensive efficacy and safety of Iran plants: a systematic review Hasan Fallah Huseini¹, Behzad Foroutan^{2,3}, Saeed Kianbakht^{1,*} - ¹ Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran - ² Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran - ³ Department of Pharmacology, School of Medicine, Iranshahr University of Medical Sciences Iranshahr, Iran #### ARTICLE INFO # Keywords: Brassicaceae Herbal Ethnomedicine Bioactivity Health benefit #### **ABSTRACT** Background: Antihypertensive plants are one of the means of hypertension control. **Objective:** To examine the clinical antihypertensive efficacy and safety of the plants **Methods:** PUBMED, MEDLINE, SCOPUS, in Iran. SCIENCEDIRECT, PROQUEST, OVID, EBSCO, GOOGLE, and GOOGLE SCHOLAR were searched. The PRISMA guideline was observed. The search terms were Iran, Iranian, plant, herb, antihypertensive, hypertension and randomized controlled trial (RCT). English-language articles published until the end of 2022 were included. In-vitro and animal studies, editorials, and reviews were excluded. The methodological quality of the RCTs was evaluated using the JADAD scale. Results: Two hundred and eight studies were found. Only 74 of them were eligible. For Berberis vulgaris (5 studies), Nigella sativa (10 studies), Allium sativum (12 studies), Hibiscus sabdariffa (11 studies), Beta vulgaris L (15 studies), Solanum lycopersicum (5 studies), Cinnamomum verum (9 studies), Rhus coriaria (1 study), Phyllanthus emblica (1 study), Olea europaea (4 studies), and Vaccinium arctostaphylos (3 studies) were found. Most RCTs had high methodological quality and reported efficacy and no side effects. Conclusion: While most trials demonstrate antihypertensive efficacy and safety, there are more evidence regarding Hibiscus sabdariffa, Olea europaea, Vaccinium arctostaphylos and Allium sativum versus the other plants. Abbreviations: 2hPPG, 2 hour post-prandial plasma glucose; ABPM, ambulatory blood pressure monitoring; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BID, twice a day; BL, base line; BMI, body mass index; BP, blood pressure; BS, blood sugar; BUN, blood urea nitrogen; CBC, complete blood count; CK-MB, creatine kinase-myoglobin binding; Cr, creatinine; CVLT-II, California Verbal Learning Test Second Edition; DBP, diastolic blood pressure; EC, enteric coated; eGFR, estimated glomerular filtration rate; EHTN, essential hypertension; ET, extract; FBS, fasting blood sugar; FID, 4 times a day; HAM, healthy adolescent male; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; HDL-C, high density lipoproteins-cholesterol; HR, heart rate; HS, hibiscus subdariffa; hs-CRP, high-Sensitivity C-Reactive Protein; LDL, low-density lipoprotein; ICAM-1, intercellular adhesion molecule-1; LDL-C, low density lipoproteins-cholesterol; HTN, hypertension; HCL, hypercholesterolemia; LV, left ventricular; MDA, malondialdehyde; MetS, metabolic syndrome; N/A, not applicable; NS, nigella sativa; NS, Not Significant; Po, placebo; RDB, randomized double blind; PAH, Pulmonary arterial hypertension; Pre-DM, pre diabetes mellitus; s-ICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1; T2DM, type 2 diabetic mellitus; TID, 3 times a day; SBP, systolic blood pressure; NAFLD, non-alcoholic fatty liver disease; NHV, Normal healthy volunteer; OLE, olive leaf extract; RCT, randomized controlled trial; SBP, systolic blood pressure; SGOT, serum glutamic oxaloacetic transaminase; SGPT, serum glutamic pyruvic transaminase; STAI, State-Trait Anxiety Inventory; TC, total cholesterol; TDS, three times a day; TE, tomato extract; TG, triglycerides; TNF-α, tumor necrosis factor alpha; Tsp, tea spoonful; UHTN, uncontrolled hypertension. *Corresponding author: kianbakht@imp.ac.ir doi: 10.61186/jmp.22.85.1 Received 21 December 2022; Received in revised form 26 December 2022; Accepted 21 February 2023 © 2020. Open access. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) #### 1. Introduction Hypertension prevalent condition is categorized into two types: essential hypertension and secondary hypertension. Essential and secondary hypertensions respectively constitute 90-95 % and 5-10 % of the hypertensive cases [1, 2]. Uncontrolled leads hypertension cardiovascular to complications myocardial such as stroke, infarction. retinopathy. nephropathy, and Hypertension is the leading cause of morbidity and mortality. It is usually defined as SBP (systolic blood pressure) ≥ 140 mm Hg and DBP (diastolic BP) \geq 90 mm Hg [1, 3]. Normal BP is defined as SBP < 120 mm Hg and DBP < 80 mm Hg. Every 20/10 mm Hg increase of BP above 115/75 mm Hg is associated with a doubling of the risk of cardiovascular diseases (CVD). The target of 120/80 mm Hg is more beneficial than the previous goal of 140/90 mm Hg in hypertension control [4]. There are around 1.4 billion hypertensive adults in the world, but the BP of less than 14 % is controlled with antihypertensive pharmacotherapy SBP/DBP < 140/90 mm Hg [5, 6]. One of the main causes of inadequate BP control is limited efficacy and safety profiles of the conventional antihypertensive drugs, which necessitates alteration of drug regimen or combination therapy [7, 8]. More than one-half of the patients need two or more antihypertensive drugs to achieve the goal BP [9]. Antihypertensive plants can be used as alternative or complementary therapies to conventional antihypertensive drugs [10]. Some plants found in Iran may have antihypertensive effects. This review aims to evaluate the clinical antihypertensive efficacy and safety of the plants existing in Iran. #### 2. Materials and Methods 2.1. Method of search and assessment of trial quality This systematic review was conducted in the accordance with Preferred Items for **Systematic** and Reviews Meta-analyses (PRISMA) guidelines. The terms Iran, Iranian, plant, herb, antihypertensive, hypertension, randomized controlled trial (RCT) were searched in the databases PubMed, Medline, Scopus, Embase, ScienceDirect, ProQuest, Ovid, Ebsco, Google, and Google Scholar. References from relevant articles were searched manually. Also, the methodological quality of the trials was evaluated by the JADAD scale as described previously [11]. ### 2.2. Eligibility of the articles RCTs in the English language studying the antihypertensive efficacy and safety of the plants found in Iran were eligible. The articles published until the end of the year 2022 were included. Reviews, editorials and animal and in vitro studies were excluded. # 2.3. Selection of articles The authors independently screened the retrieved articles and resolved differences through discussion. The titles, abstracts and full texts of the retrieved articles were assessed. ### 2.4. Collation of data The process of data collation is depicted in the PRISMA flow diagram (Fig. 1). # 3. Results The results were summarized and presented in the Table. Fig. 1. The PRISMA flow diagram **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran | Ref | JADAD score
(Out of 5) | *Level of evidence/Study
design/Participants/Inclusion
criteria | Intervention/Control
group | Outcome measure | Results / Safety | |-----|---------------------------|---|---|-----------------------------------|--| | | | | Berberis vulgaris | | | | 12 | > 3 | I/RCT/57 (19 <i>B. vulgaris</i>
1Tsp, 19 2Tsp /19 Po)/T2DM | Group1- n = 19, daily consumption of 1Tsp processed <i>B. vulgaris</i> in apple vinegar Group 2- n = 19, daily consumption of 2Tsp processed <i>B. vulgaris</i> in apple vinegar Group3- n = 19 with no change in their diet (Po) for 4 weeks | BP and
inflammatory
markers | NS* SBP/ DBP
change compared
with Po and BL
No adverse effect
reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/Study
design/Participants/Inclusion
criteria | Intervention/Control group | Outcome measure | Results / Safety | |-----|---------------------------|---|--|--|--| | 13 | >3 | I/RCT/80 (40 <i>B. vulgaris</i> and 40 Po)/ NAFLD | Case group- n = 40 Two capsules (750 mg) including <i>B. vulgaris</i> extract every day for 3 months Control group n = 40 Po every day for 3 months | BP and weight | ↓ SBP/ DBP
compared with Po
No adverse effect
reported | | 14 | > 3 | I/RCT/101 (51 <i>B. vulgaris</i> 50 Po)/MetS and Aged between 18-65 years | Case group n = 51 receiving a capsule of barberry 600 mg/daily for 6 weeks Control group n = 50 receiving a Po capsule for 6 week s | Anthropometric
measurements, BP
and FBS | ↓ SBP/ DBP
compared with Po
No adverse effect
reported
| | 15 | > 3 | I/RCT/(23) <i>B. vulgaris</i> and 23
Po)/T2DM | Barberry juice group n = 23 who consumed 200 ml of barberry juice daily for 8 weeks Control group n = 23 with no intervention for 8 weeks | BP and biochemical markers | ↓ SBP/ DBP
compared with BL
and ↓ DBP
compared with Po
No adverse effect
reported | | 16 | > 3 | I/RCT/80 (40 <i>B. vulgaris</i> and 40 Po)/T2DM and Age 20-65 years | Group1- n = 40, 1000mg
dry extract (157.3 mg
berberine per day) for 6
weeks
Group2- n = 40, daily
consumption of Po for 6
weeks | Blood glucose and
Lipid profile levels | NS* SBP/ DBP
change compared
with Po and BL
No adverse effect
reported | | | | | Nigella sativa | | | | 17 | > 3 | I/RCT/70 (35 NS and 35
Po)/NHV | Group1- n = 35 received 2.5 ml NS oil BID for 3 months Group2- n = 35 received similarly 2.5 ml mineral oil BID for 3 months | SBP/DSB, BMI and
blood levels of
SGOT, ALT, ALP,
Cr and BUN | ↓ SBP/ DBP
compared with Po
and BL
No adverse effect
reported | | 18 | > 3 | I/RCT/20 (10 NS and 10
Po)/stage 1 HTN | NS group n = 10 receiving 1000 mg of powdered NS BID for 50 days Control group n = 10 receiving the same doses of Po for 50 days | SBP/DBP, lipid
profile, BS, some
anthropometric
indicators | ↓ SBP/DBP
compared with Po
↓ SBP compared
with BL
No adverse effect
reported | | 19 | < 3 | I/NRCT/114/(57 NS and 57
Po)/T2DM | NS group n = 57 receiving 2 g of powdered NS daily for 1 year Control group n= 57 receiving the same doses of Po for 1 year | Lipid levels, BP and
HR | ↓ SBP/ DBP compared with BL and ↓ DBP compared with Po No adverse effect reported | | 21 | > 3 | I/RCT 119/ (36 NS, 39 NS and 33 Po)/Mild HTN | Group1- n = 36, 200 mg NS extract Group2- n = 39, 400 mg NS extract Group3- n = 33 Po for /8 weeks | HTN | ↓ SBP, DBP in bot
groups compared
with Po and BL
No adverse effect
reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/Study
design/Participants/Inclusion
criteria | Intervention/Control
group | Outcome measure | Results / Safety | |-----|---------------------------|---|--|--|--| | 22 | > 3 | I/RCT/73(39 NS and 34
Po)/HCL | Group1- n = 39, 2 g
NS powder
Group2- n = 34 Po/ 6
weeks | BMI, waist-hip ratio,
BP, FBS, serum
lipids, and serum
ALT and Cr | NS* SBP/DBP
change compared
with Po and BL
No adverse effect
reported | | 23 | > 3 | I/RCT/39 (19 NS and 20
Po)/obese Men | Group1- n = 19, 1.5 g
NS powder
Group2- n = 20 Po/ 12
weeks | BW, waist circumference, and BP, serum free testosterone, FBS, TG, HDL- Cholesterol, UA, Cr, SGOT and SGPT, adiponectin, and hs- CRP | ↓ SBP compared
with BL
No adverse effect
reported | | 24 | > 3 | I/RCT /40 (20 NS and 20
Po)/HAM | Group1- n=20 1g NS
powder
Group2 n= 20 Po /9
weeks | TC, TG and HDL
cholesterol, VLDL,
LDL cholesterol, CK-
MB; AST, ALT,
ALP, Total protein,
Albumin, Bilirubin,
Cr and BUN | NS* SBP/DBP
change compared
with Po and BL
No adverse effect
reported | | 25 | > 3 | I/RCT /80 (40 NS and 40
Po)/MetS | Group1- n= 40 NS
powder 500mg
Control group n= 40
Po /8 weeks
Aspirin 150mg once a
day was given in both
groups. | FBG, PPBG & HbA1C at the beginning of the trial, the once every two weeks during the trial. Venous blood was also collected from each subject before and after the trial | ↓ SBP, DBP
compared with BL
and control group
No adverse effect
reported | | 26 | > 3 | I/RCT /48 (24 NS and 24
Po)/HAM | Group1- n = 24 500
mg NS powder
Group2- n = 24 Po /4
weeks | Cognition with
CVLT-II, mood with
Bond-Lader scale and
anxiety with STAI | NS* SBP/DBP
change compared
with Po and BL
No adverse effect
reported | | | | | Allium sativum | | | | 27 | < 3 | I/RCT /20 (In 1 group)/EHTN | Group1- n= 20 Garlic
pearls 250mg/day for
2 months | Lipids and lipoprotein subfractions, plasma-ox-LDL, plasma and urinary concentration of 8-iso-PGF $_{2\alpha}$ and the TOS | ↓ SBP/DBP
compared with BL
No adverse effect
reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/
Study design/
Participants/ Inclusion
criteria | Intervention/Control group | Outcome
measure | Results / Safety | |-----|---------------------------|--|--|---|---| | 28 | > 3 | I/RCT /62 (30 garlic 32
Po)/normo-lipidaemic
volunteers | Group1- n = 30 Garlic powder
(10.8 mg alliin)
Group2- n = 32 Po/ 12 weeks | Serum lipids, BP
and arterial
stiffness | NS* SBP/DBP
change compared
with Po and BL
No adverse effect
**reported | | 29 | > 3 | I/RCT /47 (24 garlic 23
Po)/mild HTN | Group1- n = 24 Garlic powder
600 mg
Group2- n = 23 Po/ 12 weeks | BP and plasma
lipids | ↓ Supine DBP
compared with BL
No adverse effect
reported | | 30 | > 3 | I/RCT /42 (garlic 23 and
19 Po)/normotensives
mild HCL men | Group1- n = 23 Garlic powder
600 mg
Group2- n = 19 Po/ 12 weeks | TC, LDL, HDL
cholesterol | ↓ SBP/DBP
compared with Po
No adverse effect
reported | | 31 | > 3 | I/RCT /84 (garlic
30/18/16 and 20 Po)/mild
& moderate HTN | One tablet containing 300 mg garlic powder BID, n = 30 or continued to receive a Po of identical appearance, n = 20 Some patients were randomly switched to the open-label branch and received either 2400 mg Allicor daily (2 tablets FID, n = 18 or 900 mg Kwai 1 tablet containing 300 mg TID, n=16/Po 12 weeks | TC, LDL, HDL
cholesterol | ↓ SBP in 480/960
compared with Po
No adverse effect
reported | | 32 | > 3 | I/RCT/189 (seven groups;
A:300, B: 600, C: 900, D:
1200, E: 1500 mg garlic,
F: 100 mg atenolol and G:
Po n = 27/EHTN | Group A- n = 27, Garlic 300 mg
Group B- n = 27, Garlic 600 mg
Group C- n = 27, Garlic 900 mg
Group D- n = 27, Garlic 1200 mg
Group E- n = 27, Garlic 1500 mg
Group F- n= 27, Atenolol 100 mg
Group G- n = 27 Po/ 24 weeks | BP readings
recorded at weeks
0, 12 and 24 | ↓ SBP, DBP compared with Po | | 33 | > 3 | I/RCT /50 (garlic 25 and 25 Po)/UHTN | Group1- n = 25 Garlic extract
960 mg
Group2- n = 25 Po/ 12 weeks | SBP and DBP at
baseline, 4, 8 and
12 weeks, and
change over time | ↓ SBP compared
with Po
No adverse effect
reported | | 34 | > 3 | I/RCT /37 (garlic 16 and
23 Po)/pre HTN | Group1- n = 16, Garlic powder 600 mg Group2- n = 23 Po/ 12 weeks | BP were recorded at visits 1 and 2. Then all participants were further instructed to self-measure their BP at home during the 2-week interval between clinic visits 2 & 3 | ↓ SBP, DBP
compared with Po
No adverse effect
reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/
Study design/
Participants/Inclusion
criteria | Intervention/Control
group | Outcome measure | Results /
Safety | |-----|---------------------------|--|---|---|--| | 35 | > 3 | I/RCT /88 (garlic 50
and 38 Po)/UHTN | Group1- n = 50 Aged-
garlic extract 1.2 g
Group2- n = 38 Po/ 12
weeks | BP, and secondary outcome
measures of central-
hemodynamics and other
cardiovascular markers,
including cholesterol,
homocysteine, platelet function,
and inflammatory markers | ↓SBP, DBP
compared
with Po
No adverse
effect
reported | | 36 | > 3 | I/RCT /49 (garlic 23
and 26 Po)/UHTN | Group1- n = 23 Aged-
garlic extract 1.2 g
Group2- n = 26 Po/ 12
weeks | BP, pulse wave velocity and arterial stiffness, inflammatory markers, and gut microbiota | \$SBP, DBP
compared
with Po
No adverse
effect
reported | | 37 | > 3 | I/RCT /98 (garlic 23
and 26 Po)/ NAFLD | Group1- n = 47 Garlic
tablet 400 mg
(EC-coated
tablet containing 1.5 mg
Allicin) BID
Group2- n = 51 Po (EC-
coated tablet containing
400mg microcrystalline
cellulose) BID/ 15 weeks | BP and hs-CRP | ↓SBP, DBP
compared
with Po
No adverse
effect
reported | | | | | Hibiscus sabdariffa | | | | 38 | > 3 | I/RCT /54 (HS 31 and 23 Po)/moderate EHTN | Group1- n = 31 10g HS
(decoction)
Group2- n = 23 Po/ 2
weeks | SBP and DBP were measured before and 15 days after the intervention | \$\\$BP\$, DBP compared with BL and control groups No adverse effect reported | | 39 | > 3 | I/RCT/7 5 (39 HS 36
Po)/ T2DM with mild
HTN | Group1- n = 39 10 g HS
(decoction)
Group2- n = 36 Po/ 4
weeks | tolerability, diastolic reduction > or = 10 mm Hg and, in the experimental group, urinary electrolytes modification | \$\$BP, DBP compared with BL and Po groups No adverse effect reported | | 40 | > 3 | I/RCT /171 (were in HS
and Po)/stage I or II
HTN | Group1- n = 86 HS equivalent to 250 mg anthocyanin Control group n = 85 (10mg Lisinopril)/ 4 weeks | Effectiveness (DBP reduction ≥10 mmHg), Safety (absence of pathological modifications in the biochemical tests of hepatic & renal function), Tolerability (absence of intense side effects), effect on serum electrolytes, and ACE activity | ↓SBP, DBP
compared
with BL and
Po group
No adverse
effect
reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/Study
design/Participants/Inclusion
criteria | Intervention/Control
group | Outcome measure | Results / Safety | |-----|---------------------------|---|---|--|--| | 41 | > 3 | I/RCT /53 (27 HS 26 Po)/
T2DM with mild HTN | Group1- n = 27 HS 2 g
(decoction)
Group2- n = 26 Po
(black tea)/ 4 weeks | BP was measured
on days 0, 15 and
30 of the study | ↓SBP compared with
BL and Po group
No adverse effect
reported | | 42 | < 3 | I/RCT /20 (10 HS and 10 captopril)/mild HTN | Group1- n = 10 HS extract 1000 mg (250 mg anthocyanin) Control group n = 10, 25 mg Captopril/ 6 weeks | АВРМ | ↓SBP, DBP
compared with BL
No adverse effect
reported | | 43 | > 3 | I/RCT /41 (20 HS 21
Po)/diabetic nephropathy | Group1- n = 20 HS
extract 850mg
Group2- n = 21 Po/8
weeks | BP and Urinary
albumin
concentration | ↓SBP compared with BL No adverse effect reported | | 44 | > 3 | I/RCT /65 (35 HS 30 Po)/ pre
and mild HTN | Group1- n = 35 HS 3.75g
(decoction)/
Group2- n = 30 Po/ 6
weeks | A standardized
method was used
to measure BP at
baseline and
weekly intervals | ↓SBP compared with
Po group
No adverse effect
reported | | 45 | > 3 | I/RCT/36 (19 HS 17 Po)
/T2DM with mild HTN | HSE-treated group
n = 19 HS extract 900
mg
Control group n = 17 Po/
12 weeks | BMI, body fat,
waist-to-hip ratio,
and FFA | ↓SBP compared with
BL and Po group
No adverse effect
reported | | 46 | > 3 | I/RCT/50 (25 HS 25 Po)/mild
to moderate HTN | Group1- n = 25 HS 9 g
(decoction)/
Group2- n = 25 Po/ 4
weeks | BP, serum, and
urine electrolytes
were measured at
baseline, weekly
during treatment
and 1 week after
withdrawal of
treatment | ↓SBP, DBP
compared with BL
and Po group
No adverse effect
reported | | 47 | > 3 | I/RCT/35 (18 HS 17 Po)/MetS | Group1- n = 18 HS
extract 500 mg
Group2- n = 17 Po/ 4
weeks | SBP and DBP and
BMI FBS, Insulin,
lipoproteins, TG,
hs-CRP, and MDA
were determined
pre- and post-
intervention | ↓SBP compared with
Po group
No adverse effect
reported | | 48 | >3 | I/RCT/33 (17 HS 16 Po)
/healthy adult | Group1- n = 17 HS
extract 450 mg | 48 | >3 | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/Study
design/Participants/Inclusion
criteria | Intervention/Control
group | Outcome measure | Results / Safety | |-----|---------------------------|---|--|---|---| | | | | Beta vulgaris | | | | 49 | N/A | 47 intervention (n = 650) and 43 control (n = 598) groups. | 2-56 days, 70-500 ml/d
Beetroot juice
supplemented | SBP, DBP | ↓ SBP, DBP in nitrate-rich compared with control groups No adverse effect reported | | 50 | > 3 | I/RCT/ 12 (5 male, 7 female)/healthy older adults | 3 h after ingestion
140 ml of nitrate-rich/
140 ml nitrate-depleted
beetroot juice | BP, blood
coagulation,
vascular
inflammation
markers, plasma
nitrate and nitrite
before, and 3 h and
6 h after ingestion | ↓ SBP, DBP in
nitrate-rich
compared with BL
No adverse effect
reported | | 51 | 3 | I/RCT/24 in either group/mild
HTN | Group1- n = 24 250 ml
Raw beetroot juice
Group2- n = 24 250 g
Cooked beetroot juice/ 2
weeks | SBP, DBP, FMD
and TNF-α | ↓ SBP, DBP
compared with BL in
both groups
No adverse effect
reported | | 52 | > 3 | I/RCT/40 (20 nitrate-rich and
20 nitrate-depleted beetroot
juice)/ HTN pregnant women | Group1- n = 20 beetroot
juice 70 ml
Group2- n =20 nitrate-
depleted beetroot juice
70ml/ 8 day | BP, cardiovascular
function and utero-
placental blood
flow | No overall reduction in BP in the nitrate-treated group; however there was a highly significant correlation between changes in plasma nitrite concentrations and changes in DBP in the nitrate-treated arm only | | 53 | > 3 | I/RCT/18 cross-over/untreated
HTN | Group-1 n = 18 consumed randomly, a nitrate-rich (8.1 mmol- BRJ nitrate) and a nitrate-depleted (BRJ placebo) BRJ | Participants performed submaximal isometric handgrip with beat-by-beat monitoring of hemodynamics and cBRS. AMBP assessment followed. | Office/ambulatory
BP were lower
following BRJnitrate
vs BRJpo
No adverse effect
reported | | 54 | < 3 | II/RCT/30 (10 in each group)/
healthy non-smoking men and
women, aged 55–70 years,
with a BMI between 25 and 40
kg/m2 | Group1- n = 10 beetroot
juice
Group2- n = 10 r
isometric handgrip
exercise
Group3- n=10 control/7
days | Clinic and 24-h ABP, peripheral arterial function quantified by pulse wave velocity and arterial volume distensibility were assessed before and after intervention. | No change in SBP
and DBP
No adverse effect
reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/
Study design/
Participants/
Inclusion criteria | Intervention/Control group | Outcome measure | Results /
Safety | |-----|---------------------------|---|--|---|--| | 55 | > 3 | I/RCT/14/ non-
hypertensive obese
individuals | Fourteen were randomly assigned to 3 experimental sessions: 1) Beetroot juice with exercise (BJE, 200 ml with ≈ 800 mg nitrate and 40 minutes of moderate-intensity aerobic exercise at an intensity of 50% of the heart rate reserve), 2) fruit soda with exercise (FSE, 200ml of a low-nitrate drink and the same exercise session) and 3) control (CON, 200ml of water, an insignificant nitrate drink without exercise). | Subjects were instructed to shower after each experimental session. ABMP device was fitted on their non-dominant arm. They were fitted with the ABPM device ~60 minutes after the experimental sessions and had it removed on the following day. The device was programmed to measure BP every 15 minutes while the subject was awake and every 30 minutes during their periods of sleep | NS* changes
were observed
for
ambulatory
DBP
No adverse
effect reported
| | 56 | < 3 | II/RCT/21 (10 & 11) subjects completing the study | 56 | < 3 | II/RCT/21 (10
& 11) subjects
completing
the study | | 51 | < 3 | II/RCT/24 twelve
raw beet juice and
12 cooked beet/
HTN | 24 hypertensive subjects aged 25-68 years | 51 | < 3 | | 57 | < 3 | I/RCT/ 15 / patients
with PAH | Group 1- n=15 The patients received nitrate-rich beetroot juice (~16 mmol nitrate per day) and Po in 2 treatment periods of 7 days each. | The primary outcome: change in peak oxygen consumption (VO2 peak) and VO2 at the anaerobic threshold. The secondary outcome: changes in; the 6-minute walking test, WHO-functional class, right and left ventricular function, right and left atrial/ventricular dimensions, systolic pulmonary artery pressure, exhaled NO, systemic BP, N-terminal pro-brain natriuretic peptide, biochemical variables involved in the NO system, a range of standard variables obtained from the ergo-spirometry PAH | SBP and DBP
did not differ
between
interventions
No adverse
effect reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/
Study design/
Participants/
Inclusion criteria | Intervention/Control group | Outcome measure | Results / Safety | |-----|---------------------------|---|--|--|---| | 58 | > 3 | I/RCT/64 NHV | Group1- n = 32 receive daily dietary supplementation with dietary nitrate (250 ml daily, as beetroot juice) Group2- n = 32 Po (250 ml daily, as nitrate-free beetroot juice)/ 4 weeks | ABP, BP, and HR | Robust BP
lowering
No adverse effect
reported | | 59 | > 3 | I/RCT/ 47 middle-
aged and older
participants | Group1- n = 16 Combined intervention (high-nitrate beetroot juice and folic acid) Group2- n = 16 Single intervention (high-nitrate beetroot juice and Po) Group3- n = 15 control (nitrate-depleted beetroot juice and Po)/ 60 days | Clinic and 24-h ambulatory
BP and measurements of
compliance in plasma
(nitrate and folate
concentrations) and saliva
(nitrate and nitrite) were
obtained at baseline, 30 d,
and 60 d | ↓BP
No adverse effect
reported | | 60 | > 3 | I/RCT/ 87/ patients
with/at risk of
T2DM | Group1- n = 27 Doxazocin + Po juice Group2- n = 16 Doxazocin + Active beetroot juice Group3- n = 20 Spironolactone + Po juice Group4- n = 24 Spironolactone + Active beetroot juice/3 and 6 months | Haemodynamic parameters,
Echocardiographic
morphological Parameters,
and Echocardiographic
Systo-Diastolic function | BP did not differ
between the
juices, or between
the drugs.
However, 6
months' dietary
nitrate decreased
LV volumes ~5%
No adverse effect
reported | | 61 | > 3 | I/RCT/ 87/ UHTN | Group1- n = 20 (13 + 7) 7-d,
double-blind, randomized, Po
- controlled, cross-over trial
to assess the effect of dietary
nitrate. Subjects were tested
on three separate occasions –
baseline (day 1), midpoint
(day 8) and endpoint (day 15)
– before and after each
intervention period | On all 3 testing days (days 1, 8 and 15) in an identical manner and at the same time of day, non-fasting blood was drawn and subjects were fitted with an ABPM for 24 h | It is noteworthy
that BP values
decreased after
Po, as well as
after NO3-
No adverse effect
reported | | 62 | > 3 | I/RCT/27/HTN men
and women | Group1 – n = 27 The effect of
1-week intake of nitrate-rich
beetroot juice was compared
with 1-week intake of nitrate-
depleted beetroot juice (Po) | The primary outcome was BP assessed by measuring home BP during the intervention and 24-h AMBP on day 7 of the intervention. Other outcomes included nitrate metabolism assessed by measuring nitrate and nitrite in plasma, saliva, and urine | An increase in dietary nitrate intake may not be an effective short-term approach to further lower BP in treated hypertensive subjects No adverse effect reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/
Study design/
Participants/
Inclusion criteria | Intervention/Control group | Outcome
measure | Results /
Safety | |-----|---------------------------|---|--|--|--| | | | | Solanumly copersicum | | | | 63 | < 3 | I/RCT/31/grade-1
HTN | Group1-n=31 Po period/ 4 weeks The same group (Group1) n =31 TE 250mg/ 8 weeks | SBP, DBP | ↓SBP, DBP in
TE group
compared
with BL
No adverse
effect reported | | 64 | > 3 | I/RCT/25 pre-HTN
15 TE, 11 dark
chocolate, 10 Po | Group1- n= 11 Fifty grams daily dose of dark chocolate with 70% cocoa containing 750mg polyphenols Group2- n= 15 Were allocated one tomato extract capsule containing 15mg lycopene per day, and Control group n= 10 received 1 placebo capsule daily/ Over 8 weeks followed by a 4-week washout period. | Median BP,
weight, and
abdominal
circumference | No change in
SBP and DBP
No adverse
effect reported | | 65 | > 3 | I/RCT /50 (26 TE, 24
Po)/uncontrolled HTN | Group1- n= 26 TE 250mg (15 mg lycopene)
Group2- n=24 Po/ 6 weeks | Plasma
concentrations
of lycopene,
nitrite and
nitrate | ↓SBP, DBP in
TE group
compared
with BL
No adverse
effect reported | | 66 | > 3 | I/RCT/126 (41
lycopen 6 mg; 37
lycopen 15 mg; 38
Po)/NHV | Group1- n= 41 Lycopen 6 mg
Group2- n= 37 Lycopen 15 mg
Group3- n= 38 Po/ 8 weeks | hs-CRP, SBP,
sICAM-1 and
sVCAM-1 β-
carotene and
LDL | ↓SBP in 15
mg Lycopen
group with
BL
No adverse
effect reported | | 67 | >3 | I/RCT /24 in either
group/Mild HTN | Group1- n= 24 Synthetic lycopene 15mg
Group2- n=24 Po/ 8 weeks | ВР | ↓SBP
compared
with control
groups
No adverse
effect reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/
Study design/
Participants/
Inclusion criteria | Intervention/Control group | Outcome
measure | Results / Safety | |-----|---------------------------|---|---|---|---| | | | | Cinnamomum verum | | | | 68 | > 3 | I/RCT /22 (12 in
cinnamon 10 in
Po)/Pre-DM | Group1- n = 12 Cinnamon extract
250 mg TID
Group2- n = 10 Po/ 12 Weeks | FBG, SBP, and
Body composition | ↓ SBP No change in
DBP
No adverse effect
reported | | 69 | > 3 | I/RCT /58 (30 in
cinnamon 28 in
Po)/T2DM | Group1- n = 30 Cinnamon 2g daily
Group2- n = 28 Po/ 12 Weeks | FBG, SBP, DBP,
HbA1c | ↓ SBP, DBP
compared with Po
No adverse effect
reported | | 70 | > 3 | I/RCT/59 (29 in
cinnamon 30 in
Po)/T2DM | Group1- n = 29 Cinnamon extract
400 mg TID
Group2- n = 30 Po/ 12 Weeks | BP, HbA1c, FBG,
lipid profile,
physical
examination, and
Blood and Urine
chemistry | ↓ SBP ↓DBP
compared with Po
and BL
No adverse effect
reported | | 71 | > 3 | I/RCT /37 T2DM 19
in cinnamon 18 in Po | Group1- n = 19; 2 capsule each
contain 500 mg Cinnamon powder
TID (3g daily)
Group2- n = 18 Po/8 weeks | Weight, height,
body fat mass,
SBP and DBP | No change in SBP
and DBP
No adverse effect
reported | | 72 | >3 | I/RCT/ 135 (63 in
cinnamon 72 in
Po)/Hyperglycemic
individual | Group1- n = 63 Cinnamon extract
250 mg BID
Group2- n=72 Po/ 8 Weeks | FBG, SBP and DBP, serum lipids, and Fructosamine. | No change in SBP
and DBP
No adverse effect
reported | | 73 | >3 | I/RCT /79 (40
cinnamon/39
P)/T2DM | Group1- n = 40 Cinnamon 3g daily
+ Black tea
Control group n =39 Po + Black
tea/ 8 Weeks | ICAM-1, SBP,
DBP and
Anthropometric
measures | No change in SBP
and DBP
No adverse effect
reported | | 74 | > 3 | I/RCT /99 (49
cinnamon/50
Po)/T2DM | Group1- n = 49 Cinnamon extract
500 mg TID
Group2- n = 50 Po/ 8 Weeks | Glucose, TG,
HDL-C levels,
TG/HDL-C ratio,
BP, and eGFR | ↓ SBP ↓DBP
compared with Po
and BL
No adverse effect
reported | | 75 |
> 3 | I/RCT /116 (58
cinnamon/58 Po
(/MetS | Group1- n = 58 Cinnamon powder
3g daily Control group n = 58 Po/
16 Weeks | Body
composition, BP
and Metabolic
parameters | ↓ SBP ↓DBP compared with Po and BL No adverse effect reported | | 76 | >3 | I/RCT /36 (18 in
cinnamon 18 in
Po)/RA women | Group1- n = 18 Cinnamon capsule
500 mg FID
Control group n = 18 Po/ 8 Weeks | FBS, lipid profile, liver enzymes, serum levels of CRP, TNF-α, ESR, BP, and Clinical symptoms | ↓ SBP ↓DBP
compared with Po
and BL
No adverse effect
reported | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/
Study design/
Participants/
Inclusion criteria | Intervention/Control group | Outcome measure | Results / Safety | |-----|---------------------------|--|--|--|---| | | | | Rhus coriaria | | | | 77 | > 3 | I/RCT /80/HTN | Group1- n = 40 received <i>R.</i> Coriaria capsules (500mg BID) and captopril (25mg daily) Group2- n = 40 Po capsules (500mg starch BID) and captopril (25mg daily)/ 8 weeks | BP and BMI | ↓ SBP ↓DBP
compared with Po
and BL
No adverse effect
reported | | | | | Olea europaea | | | | 78 | > 3 | I/RCT/64 (32 in OLE
32 Po)/mild to
moderate HTN | Group1- n = 32 OLE 500mg
Group2- n = 32 Po/ 8 Weeks | Risk factors of
atherosclerosis and
co-morbid medical
conditions, SBP,
DBP, and HR | ↓SBP in OLE group
compared with Po
and BL. ↓DBP
compared with Po
No adverse effect
reported | | 79 | < 3 | I/RCT /40
monozygotic twins/
borderline HTN | Group1- n = 10; 500 Olive leaf extract Control group1- n = 10; No medication but advice on how HTN be ameliorated by an adequate lifestyle Group2- n = 10; 500 Olive leaf extract Control group2- n = 10; No medication but advice on how HTN be ameliorated by an adequate lifestyle/ 8 Weeks | Body weight, HR,
BP, glucose and
lipids | ↓SBP, DBP in 1000
mg OLE group
compared with BL
No adverse effect
reported | | 80 | > 3 | I/RCT /148 stage-1
HTN/ 72 olive leaf
extract
76 captopril | Group1- n = 72; 500 mg Olive leaf
extract BID
Control group n = 76 /12.5 mg
captopril BID/ 8 Weeks | SBP/DBP | ↓SBP, DBP in 1000
mg OLE group and
25 mg Captopril
compared with BL
No adverse effect
reported | | 81 | < 3 | II/Non-controlled,
non-randomized pilot
study/663/T2DM and
pre T2DM with Grade
1 HTN | 100 mg/d of Oleuropein and 20
mg/d of Hydroxytyrosol BID | SBP/DBP | ↓SBP, DBP in TE
group compared
with BL
No adverse effect
reported | | | | | Vaccinium arctostaphylos | | | | 82 | > 3 | I/RCT /100 50
Vaccinium
arctostaphylos/50
Po)/ HTN, T2DM
with hyperlipidemia | Group1- n = 50 <i>Vaccinium</i> arctostaphylos leaf extract 350 mg TID Control group n = 50 Po/ 2 Months | BP, FG, 2hPPG,
HbA1c, TC, LDL-
C, TG, HDL-C,
SGOT, SGPT and
Cr | ↓SBP, DBP in leaf
extract group
compared with Po
and BL
No adverse effect
reported | | 83 | > 3 | I/RCT /39 (in one
group)/ T2DM with
HTN | Group1- n = 39; 1, 2, 3 and 4
weeks Decoction of 7 g
V. arctostaphylos oral solution | FBS and BP | ↓SBP, DBP
compared with BL
Not reported any
harmful effect | **Table 1.** Summary of the clinical trials conducted on hypertensive patients to evaluate antihypertensive efficacy and safety of plants found in Iran (Continued) | Ref | JADAD score
(Out of 5) | *Level of evidence/
Study design/
Participants/ Inclusion
criteria | Intervention/Control group | Outcome measure | Results / Safety | |---------------------|---------------------------|--|--|---|---| | 84 | > 3 | I/RCT/100 (50
Vaccinium
arctostaphylos/50
Po)/HTN | Extract group n = 50 One extract capsule TID alongside the standard anti-hypertensive treatments for 3 months Po group n = 50 One Po capsule TID alongside the standard anti-hypertensive treatments for 3 months | SBP, DBP, BMI,
and waist
circumference
CBC, blood levels
of AST, ALT, ALP,
BUN, and Cr | ↓ SBP, ↓ DBP
compared with Po
No adverse effect
reported | | Phyllanthus emblica | | | | | | | 85 | > 3 | I/RCT/81 (<i>Ph emblica</i>
group n = 41 and Po
group n =
40)/uncontrolled HTN | EO and Po groups took 500 mg
extract and Po respectively TDS
after meal with standard anti-
hypertensives for 8 weeks | SBP, DBP | ↓ SBP/DBP
compared with Po.
No adverse effect
reported | #### 4. Discussion Hypertension is the leading cause of cardiovascular morbidity and mortality. It causes 9.4 million deaths annually in the world. The global prevalence of hypertension will increase 30 % by the year 2025. Effective treatment of hypertension is a major development in medicine. Development of numerous antihypertensive drugs have extended expectancy and reduced complications of hypertension. Medicinal plants are considered as one of the modalities for the treatment of hypertension [5]. In this systematic review, the antihypertensive efficacy and safety of the plants found in Iran as evaluated in randomized controlled trials were examined. Most clinical trials as cited in the Table had Jadad scores larger than 3, showing high methodological quality. Virtually all the medicinal plants listed in the Table were able to reduce SBP and DBP. Hibiscus sabdariffa was able to reduce SBP and DBP in all studies. Although, the number of studies on Olea europaea, Rhus coriaria, and Vaccinium arctostaphylos was small, but they showed antihypertensive efficacy. The results of studies of other plants were not as consistent as studies of these plants; i.e., the results of some studies showed antihypertensive efficacy, while some other studies did not show efficacy in lowering BP. Among these studies, most studies on Allium sativum exhibited antihypertensive efficacy. The studies on Cinnamomum verum did not show consistent results. One study concluded that it was able to lower only SBP. Beta vulgaris and Solanum lycopersicum had conflicting effects on hypertension. No adverse effect was reported in virtually all clinical trials. Systemic reflexes, namely the baroreceptor neural reflex and the renin-angiotensin-aldosterone hormonal response, control the BP. The reflexes regulate BP via action on the hemodynamic factors. As such, BP equals cardiac output (CO) multiplied by peripheral vascular resistance (PVR). In turn, CO and PVR can be subdivided into their determinants (Fig. 2) [86, 87]: Fig. 2. A schema on the hemodynamic factors involved in blood pressure regulation and hypertension. BP is a function of peripheral vascular resistance and cardiac output. Hypertension can be depicted in terms of its cardiovascular hemodynamics (Fig. 2). Increased vascular resistance or cardiac output raise BP and cause hypertension. Therefore, antihypertensive plants lower BP by decreasing vascular resistance or/and cardiac output through various mechanisms [86, 87]. Delineation of the mechanisms and sites of antihypertensive action of plants is important for optimal use of plants, for understanding the pathophysiology of hypertension and for development of new drugs [86, 87]. This systematic review suggests that limited clinical trials have been conducted on the antihypertensive efficacy and safety of most plants. There are more clinical evidence regarding the antihypertensive efficacy and safety of *Hibiscus sabdariffa*, *Olea europaea*, *vaccinium arctostaphylos* and *Allium sativum* versus the other plants. These plants seem to have efficacy and safety for the treatment of hypertension. #### 5. Conclusion Most clinical trials evaluating the antihypertensive effects of the plants had high methodological quality. Most clinical trials demonstrated antihypertensive efficacy and no adverse effect was reported for virtually all plants. Most clinical trials show promising antihypertensive efficacy and safety of the plants. There are more clinical evidence denoting antihypertensive efficacy and safety of *Hibiscus* sabdariffa, Olea europaea, vaccinium arctostaphylos and Allium sativum compared with the other plants. #### **Author contributions** SK conceived the title of study. HFH, BF and SK searched for the clinical trials, and wrote the manuscript. #### **Conflicts of interest** The authors declare that there is no conflict of interest. # References - **1.** Afzal M. Recent updates on novel therapeutic targets of cardiovascular diseases. *Mol. Cell. Biochem.* 2021; 476(1): 145-155. doi: 10.1007/s11010-020-03891-8. - **2.** Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cifkova R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A and Whelton PK. Hypertension. *Nat. Rev. Dis. Primers*. 2018; 4: 18014. doi: 10.1038/nrdp.2018.14. - **3.** Taler SJ. Initial treatment of hypertension. *N. Engl.
J. Med.* 2018; 378(7): 636-644. doi: 10.1056/NEJMcp1613481. - **4.** Volpe M, Gallo G, Battistoni A and Tocci G. Highlights of ESC/ESH 2018 guidelines on the management of hypertension: what every doctor should know. *High Blood Press. Cardiovasc. Prev.* 2019; 26: 1-8. doi: 10.1007/s40292-018-00297-y. - 5. Al-Makki A, DiPette D, Whelton PK, Murad MH, Mustafa RA, Acharya S, Beheiry HM, Champagne B, Connell K, Cooney MT, Ezeigwe N, Gaziano TA, Gidio A, Lopez-Jaramillo P, Khan UI, Kumarapeli V, Moran AE, Silwimba MM, Rayner B, Sukonthasan A, Yu J, Saraffzadegan N, Reddy KS and Khan T. Hypertension Pharmacological Treatment in World Health Organization Guideline Executive Summary. Hypertension 2022: 79: 293-301. doi: 10.1161/ HYPERTENSIONAHA.121.18192. - **6.** Bosch A and Schmieder RE. Novel approaches to management of hypertension. *Curr. Opin. Nephrol. Hypertens* 2021; 30(1): 54-62. doi: 10.1097/MNH.0000000000000668. - **7.** Gorostidi M and de la Sierra A. Combination therapies for hypertension why we need to look beyond RAS blockers. *Expert Rev. Clin. Pharmacol.* 2018; 11(9): 841-853. doi: 10.1080/17512433.2018.1509705. - **8.** Guerrero-Garcia C and Rubio-Guerra AF. Combination therapy in the treatment of hypertension. *Drugs Context* 2018; 7: 212531. doi: 10.7573/dic.212531. - **9.** Chobanian AV. Guidelines for the management of Hypertension. *Med. Clin. North Am.* 2017; 101(1): 219-227. doi: 10.1016/j.mcna.2016.08.016. - **10.** Verma T, Sinha M, Bansal N, Yadav SR, Shah K and Chauhan NS. Plants used as antihypertensive. *Nat. Prod. Bioprospect.* 2021; 11(2): 155-184. doi: 10.1007/s13659-020-00281-x. - **11.** Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ and McQuay HJ. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin. Trials.* 1996; 17(1): 1-12. doi: 10.1016/0197-2456(95)00134-4. - **12.** Golzarand M, Ebrahimi Mamaghani M, Arefhosseini SR and Aliasgarzadeh A. Short term-effect of processed berberis consumption vulgaris on cardiovascular risk factors in type II diabetes patients with metabolic syndrome. *Med. J. Tabriz Uni. Med. Sciences Health Services* 2009; 31(2): 89-94. - **13.** SalehZadeh H, Iloun kashkooli R, Najafi SS, Hosseini Asl MK, Hamedi A and Kalateh Sadati A. The Effect of *Berberis vulgaris* extract on blood pressure and weight of the patients suffered from non-alcoholic fatty liver - disease. *J. Res. Dev. Nurs. Midw.* 2013; 10(Supplementary): 21-7. - **14.** Zilaee M, Safarian M, Kermany T, Emamian M, Mobarhan MG and Ferns GAA. Effect of barberry treatment on blood pressure in patients with metabolic syndrome. *J. Natural. Products* 2015; 8: 59-63. - **15.** Lazavi F, Mirmiran P, Sohrab G, Nikpayam O, Angoorani P and Hedayati M. The barberry juice effects on metabolic factors and oxidative stress in patients with type 2 diabetes: a randomized clinical trial. *Complement. Ther. Clin. Pract.* 2018; 31: 170-174. doi: 10.1016/j.ctcp.2018.01.009. - **16.** Tahmasebi L, Zakerkish M, Golfakhrabadi F and Namjoyan F. Randomised clinical trial of *Berberis vulgaris* root extract on glycemic and lipid parameters in type 2 diabetes mellitus patients. *European J. Integrative. Medicine* 2019; 32: 1000998. doi: 10.1016/j.eujim.2019. 100998. - **17.** Fallah Huseini H, Amini M, Mohtashami R, Ghamarchehre ME, Sadeqhi Z, Kianbakht S and Fallah Huseini A. Blood pressure lowering effect of *Nigella sativa* L. seed oil in healthy volunteers: a randomized, double-blind, placebo-controlled clinical trial. *Phytother. Res.* 2013; 27(12): 1849-53. doi: 10.1002/ptr.4944. - **18.** Saumi R and Bukhari A. Phytotherapy *Nigella sativa* lowers blood pressure in patients with stage 1 hypertension. *J. Hypertension* 2015; 33(pe43). doi: 10.1097/01.hjh. 0000469884.66111.bc. - **19.** Badar A, Kaatabi H, Bamosa A, Al-Elq A, Abou-Hozaifa B, Lebda F, Alkhadra A and Al-Almaie S. Effect of *Nigella sativa* supplementation over a one-year period on lipid - levels, blood pressure and heart rate in type-2 diabetic patients receiving oral hypoglycemic agents: nonrandomized clinical trial. *Ann. Saudi. Med.* 2017; 37(1): 56-63. doi: 10.5144/0256-4947.2017.56. - **20.** Rizka A, Setiati S, Lydia A and Dewiasty E. Effect of *Nigella sativa* seed extract for hypertension in elderly: a double-blind, randomized controlled trial. *Acta Med. Indones* 2017; 49(4): 307-313. - **21.** Roghani Dehkordi F and Kamkhah AF. Antihypertensive effect of *Nigella sativa* seed extract in patients with mild hypertension. *Fundam. Clin. Pharmacol.* 2008; 22(4): 447-52. doi: 10.1111/j.1472-8206.2008.00607.x. - **22.** Qidwai W, Hamza HB, Qureshi R and Gilani AH. Effectiveness, safety, and tolerability of powdered *Nigella sativa* (kalonji) seed in capsules on serum lipid levels, blood sugar, blood pressure, and body weight in adults: results of a randomized, double-blind controlled trial. *J. Altern. Complement. Med.* 2009; 15(6): 639-44. doi: 10.1089/acm.2008. 0367. - **23.** Datau EA, Wardhana, Surachmanto EE, Pandelaki K, Langi JA and Fias. Efficacy of *Nigella sativa* on serum free testosterone and metabolic disturbances in central obese male. *Acta Med. Indones* 2010; 42(3): 130-4. - **24.** Bin Sayeed MS, Asaduzzaman M, Morshed H, Hossain MM, Kadir MF and Rahman MR. The effect of *Nigella sativa* Linn. seed on memory, attention and cognition in healthy human volunteers. *J. Ethnopharmacol.* 2013; 148(3): 780-6. doi: 10.1016/j.jep.2013. 05.004. - **25.** Najmi A, Nasiruddin M, Khan RA and Haque SF. Indigenous herbal product *Nigella* - sativa proved effective as an antihypertensive in metabolic syndrome. Asian J. Pharm. Clin. Res. 2013; 6(1): 61-64. - **26.** Bin Sayeed MS, Shams T, Fahim Hossain S, Rahman MR, Mostofa A, Fahim Kadir M, Mahmood S and Asaduzzaman Md. *Nigella sativa* L. seeds modulate mood, anxiety and cognition in healthy adolescent males. *J. Ethnopharmacol.* 2014; 152(1): 156-62. doi: 10.1016/j.jep.2013.12.050. - **27.** Dhawan V and Jain S. Effect of garlic supplementation on oxidized low density lipoproteins and lipid peroxidation in patients of essential hypertension. *Mol. Cell. Biochem.* 2004; 266: 109-15. doi: 10.1023/ b:mcbi. 0000049146.89059.53. - **28.** Turner B, Molgaard C, and Markmann P. Effect of garlic (*Allium sativum*) powder tablets on serum lipids, blood pressure and arterial stiffness in normo-lipidaemic volunteers; a randomised, double-blind, placebo-controlled trial. *Br. J. Nutr.* 2004; 92(4): 701-706. doi: 10.1079/bjn20041255. - **29.** Auer W, Eiber A, Hertkorn E, Hoehfeld E, Koehrle U, Lorenz A, Mader F, Merx W, Otto G, Schmid-Otto B and et al. Hypertension and hyperlipidaemia: garlic helps in mild cases. *Br. J. Clin. Pract. Suppl.* 1990; 69: 3-6. - **30.** Sobenin IA, Andrianova IV, Demidova ON, Gorchakova T and Orekhov AN. Lipid-lowering effects of time-released garlic powder tablets in double-blinded placebo-controlled randomized study. *J. Atheroscler. Thromb.* 2008; 15(6): 334-8. doi: 10.5551/jat.e550. - **31.** Sobenin IA, Andrianova IV, Fomchenkov IV, Gorchakova TV and Orekhov AN. Timereleased garlic powder tablets lower systolic and diastolic blood pressure in men with mild - and moderate arterial hypertension. *Hypertens*. *Res*. 2009; 32: 433-7. doi: 10.1038/hr.2009.36. - **32.** Ashraf R, Khan RA, Ashraf I and Qureshi AA. Effects of *Allium sativum* (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. *Pak. J. Pharm. Sci.* 2013; 26(5): 859-63. - **33.** Ried K, Frank OR and Stocks NP. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: a randomised controlled trial. *Maturitas* 2010; 67(2): 144-50. doi: 10.1016/j.maturitas.2010. 06.001. - **34.** Nakasone Y, Nakamura Y, Yamamoto T and Yamaguchi H. Effect of a traditional Japanese garlic preparation on blood pressure in prehypertensive and mildly hypertensive adults. *Exp. Ther. Med.* 2013; 5(2): 399-405. doi: 10.3892/etm.2012.819. - **35.** Ried K, Travica N and Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: the AGE at heart trial. *Integr. Blood Press Control* 2016; 9: 9-21. doi: 10.2147/IBPC.S93335. - **36.** Ried K, Travica N and Sali A. The Effect of kyolic aged garlic extract on gut microbiota, inflammation, and cardiovascular markers in hypertensives: the GarGIC trial. *Front. Nutr.* 2018; 5: 122. doi: 10.3389/fnut.2018.00122. - **37.** Soleimani D, Parisa Moosavian S, Zolfaghari H and Paknahad Z. Effect of garlic powder supplementation on blood pressure and hs-C-reactive protein among nonalcoholic fatty liver disease patients: a randomized, doubleblind, placebo-controlled trial. *Food Sci. Nutr.* 2021; 9(7): 3556-3562. doi: 10.1002/fsn3.2307. - **38.** Haji Faraji M and Haji Tarkhani A. The effect of sour tea (*Hibiscus sabdariffa*) on essential hypertension. *J. Ethnopharmacol*. 1999; 65(3): 231-6. doi: 10.1016/s0378-8741(98)00157-3. - **39.** Herrera-Arellano A, Flores-Romero S, Chavez-Soto MA and Tortoriello J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. *Phytomedicine* 2004; 11(5): 375-82. doi: 10.1016/j.phymed.2004.04.001. - **40.** Herrera-Arellano A, Miranda-Sanchez J, Avila-Castro P, Herrera-Alvarez S, Jimenez-Ferrer JE, Zamilpa A, Roman-Ramos R, Ponce-Monter H and Tortoriello J. Clinical effects produced by a standardized herbal medicinal product of *Hibiscus sabdariffa* on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial. *Planta Med.* 2007; 73(1): 6-12. doi: 10.1055/s-2006-957065. - **41.** Mozaffari-Khosravi H, Jalali-Khanabadi BA, Afkhami-Ardekani M, Fatehi F and Noori-Shadkam M. The effects of sour tea (*Hibiscus sabdariffa*) on hypertension in patients with type II diabetes. *J. Hum. Hypertens.* 2009; 23:
48-54. doi: 10.1038/jhh.2008.100. - **42.** Soleimani AR, Akbari H, Soleimani S, Beladi Mousavi SS and Tamadon MR. Effect of sour tea (Lipicom) pill versus captopril on the treatment of hypertension. *J. Renal. Inj. Prev.* 2015; 4(3): 73-9. doi: 10.12861/jrip.2015.15. - **43.** Najarzade A, Hemayati R, Zavar Reza J, Fallahzade H, Mozaffari-Khosravi H, Taghizadeh M and Esmaeili A. Effects of *Hibiscus subdariffa* on albuminuria and hypertension in patients with diabetic nephropathy. *The J. Toloo-e-behdash.* 2016; 14: 107-118. - **44.** McKay DL, Chen CY, Saltzman E and Blumberg JB. *Hibiscus sabdariffa* L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. *J. Nutr.* 2010; 140(2): 298-303. doi: 10.3945/jn.109.115097. - **45.** Chang HC, Peng CH, Yeh DM, Kao ES and Wang CJ. *Hibiscus sabdariffa* extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. *Food Funct*. 5(4): 734-9. doi: 10.1039/c3fo60495k. - **46.** Nwachukwu DC, Aneke E, Nwachukwu NZ, Obika LF, Nwagha UI and Eze AA. Effect of *Hibiscus sabdariffa on* blood pressure and electrolyte profile of mild to moderate hypertensive Nigerians: a comparative study with hydrochlorothiazide. *Niger. J. Clin. Pract.* 2015; 18(6): 762-70. doi: 10.4103/1119-3077.163278. - **47.** Asgary S, Soltani R, Zolghadr M, Keshvari M and Sarrafzadegan N. Evaluation of the effects of roselle (*Hibiscus sabdariffa* L.) on oxidative stress and serum levels of lipids, insulin and hs-CRP in adult patients with metabolic syndrome: a doubleblind placebo-controlled clinical trial. *J. Complement. Integr. Med.* 2016; 13(2): 175-80. doi: 10.1515/jcim-2015-0030. - **48.** Kafeshani M, Entezari MH, Karimian J, Pourmasoumi M, Maracy MR, Amini MR and Hadi A. A comparative study of the effect of green tea and sour tea on blood pressure and lipid profile in healthy adult men. *ARYA Atheroscler*. 2017; 13(3): 109-116. - **49.** Bahadoran Z, Mirmiran P, Kabir A, Azizi F and Ghasemi A. (2017). The Nitrate-independent blood pressure-lowering effect of beetroot juice: a systematic review and meta-analysis. *Adv. Nutr.* 2017; 8(6): 830-838. doi: 10.1093/ advances/nmy004. - **50.** Raubenheimer K, Hickey D, Leveritt M, Fassett R, Ortiz de Zevallos Munoz J, Allen JD, Briskey D, Parker TJ, Kerr G, Peake JM, Pecheniuk NM and Neubauer O. Acute effects of nitrate-rich - beetroot juice on blood pressure, hemostasis and vascular inflammation markers in healthy older adults: a randomized, placebo-controlled crossover study. *Nutrients* 2017; 9(11): doi: 10.3390/nu9111270. - **51.** Asgary S, Afshani MR, Rafieian-Kopaei M and Keshvari M. Clinical effects of consumption of raw beet juice and beet cooked on improving blood pressure, FMD and inflammatory cytokines TNF-α level of blood pressure on hypertensive patients volunteer. *J. Shahrekord Univ. Med. Sci.* 2017; 19(2): 148-157. - **52.** Ormesher L, Myers JE, Chmiel C, Wareing M, Greenwood SL, Tropea T, Lundberg JO, Weitzberg E, Nihlen C, Sibley CP, Johnstone ED, and Cottrell EC. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: a randomised, double-blind, placebo-controlled feasibility trial. *Nitric Oxide* 2018; 80: 37-44. doi: 10.1016/j.niox.2018.08.004. - **53.** Zafeiridis A, Triantafyllou A, Papadopoulos S, Koletsos N, Touplikioti P, Zafeiridis AS, Gkaliagkousi E, Dipla K and Douma S. Dietary nitrate improves muscle microvascular reactivity and lowers blood pressure at rest and during isometric exercise in untreated hypertensives. *Microcirculation* 2019; 26(3): e12525. doi: 10.1111/micc.12525. - **54.** Lara J, Ogbonmwan I, Oggioni C, Zheng D, Qadir O, Ashor A, Brandt K, Mathers JC and Siervo M. Effects of handgrip exercise or inorganic nitrate supplementation on 24-h ambulatory blood pressure and peripheral arterial function in overweight and obese middle age and older adults: a pilot RCT. *Maturitas*. 2015; 82(2): 228-35. doi: 10.1016/j.maturitas.2015.07.028. - 55. de Lima Bezerra AD, Costa EC, Pacheco DA, Souza DC, Farias-Junior LF, Ritti-Dia RM, Grigolo GB, de Bittencourt Junior PIH, Krause M, and Fayh APT. Effect of acute dietary nitrate supplementation on the post-exercise ambulatory blood pressure in obese males: a randomized, controlled, crossover trial. *J. Sports Sci. Med.* 2019; 18(1): 118-127. - **56.** Jajja A, Sutyarjoko A, Lara J, Rennie K, Brandt K, Qadir O and Siervo M. Beetroot supplementation lowers daily systolic blood pressure in older, overweight subjects. *Nutr. Res.* 2014; 34(10): 868-75. doi: 10.1016/j.nutres.2014. 09.007. - 57. Henrohn D, Bjorkstrand K, Lundberg JO, Granstam SO, Baron T, Ingimarsdottir IJ, Hedenstrom H, Malinovschi A, Wernroth ML, Jansson M, Hedeland M and Wikstrom G. Effects of oral supplementation with nitrate-rich beetroot juice in patients with pulmonary arterial hypertension-results from BEET-PAH, exploratory randomized, double-blind, placebocontrolled, crossover study. J. Card. Fail. 2018; 24(10): 640-653. doi: 10.1016/ j.cardfail.2018. 09.010. - **58.** Kapil V, Khambata RS, Robertson A, Caulfield MJ Ahluwalia A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. *Hypertension* 2015; 65(2): 320-7. doi: 10.1161/HYPERTENSIONAHA.114.04675. - **59.** Siervo M, Shannon O, Kandhari N, Prabhakar M, Fostier W, Kochl C, Rogathi J, Temu G, Stephan BCM, Gray WK, Haule I, Paddick SM, Mmbaga BT and Walker R. Nitrate-rich beetroot juice reduces blood pressure in tanzanian adults with elevated blood pressure: a double-blind randomized controlled feasibility trial. *J. Nutr.* 2020; 150(9): 2460-2468. doi: 10.1093/jn/nxaa170. - **60.** Faconti L, Mills CE, Govoni V, Gu H, Morant S, Jiang B, Cruickshank JK and Webb AJ. Cardiac effects of 6 months' dietary nitrate and spironolactone in patients with hypertension and with/at risk of type 2 diabetes, in the factorial design, double-blind, randomized controlled VaSera trial. *Br. J. Clin. Pharmacol.* 2019; 85(1): 169-180. doi: 10.1111/bcp.13783. - **61.** Kerley CP, Dolan E, James PE and Cormican L. Dietary nitrate lowers ambulatory blood pressure in treated, uncontrolled hypertension: a 7-d, double-blind, randomised, placebo-controlled, cross-over trial. *Br. J. Nutr.* 2018; 119(6): 658-663. doi: 10.1017/S0007114518000144. - **62.** Bondonno CP, Liu AH, Croft KD, Ward NC, Shinde S, Moodley Y, Lundberg JO, Puddey IB, Woodman RJ and Hodgson JM. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: a randomized controlled trial. *Am. J. Clin. Nutr.* 2015; 102(2): 368-75. doi: 10.3945/ajcn.114.101188. - **63.** Engelhard YN, Gazer B and Paran E. Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension: a double-blind, placebocontrolled pilot study. *Am. Heart. J.* 2006; 151(1): 100. doi: 10.1016/j.ahj.2005.05.008. - **64.** Ried K, Frank OR and Stocks NP. Dark chocolate or tomato extract for prehypertension: a randomised controlled trial. *BMC Complement Altern. Med.* 2009; 9: 22. doi: 10.1186/1472-6882-9-22. - **65.** Paran E, Novack V, Engelhard YN and Hazan-Halevy I. The effects of natural antioxidants from tomato extract in treated but uncontrolled hypertensive patients. *Cardiovasc. Drugs Ther.* 2009; 23: 145-51. doi: 10.1007/s10557-008-6155-2. - **66.** Kim JY, Paik JK, Kim OY, Park HW, Lee JH, Jang Y and Lee JH. Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. *Atherosclerosis* 2011; 215(1): 189-95. doi: 10.1016/j.atherosclerosis.2010.11.036. - **67.** Wolak T, Sharoni Y, Levy J, Linnewiel-Hermoni K, Stepensky D and Paran E. Effect of tomato nutrient complex on blood pressure: a double blind, randomized dose(-)response study. *Nutrients* 2019; 11(5): 950. doi: 10.3390/nu11050950. - **68.** Ziegenfuss TN, Hofheins JE, Mendel RW, Landis J and Anderson RA. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in prediabetic men and women. *J. Int. Soc. Sports Nutr.* 2006; 3(2): 45-53. doi: 10.1186/1550-2783-3-2-45. - **69.** Akilen R, Tsiami A, Devendra D and Robinson N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multiethnic Type 2 diabetic patients in the UK: a randomized, placebo-controlled, double-blind clinical trial. *Diabet. Med.* 2010; 27(10): 1159-67. doi: 10.1111/j.1464-5491.2010.03079.x. - **70.** Wainstein J, Stern N, Heller S and Boaz M. Dietary cinnamon supplementation and changes in systolic blood pressure in subjects with type 2 diabetes. *J. Med. Food* 2011; 14(12): 1505-10. doi: 10.1089/jmf.2010.0300. - **71.** Vafa MR, Mohammadi F, Shidfar F, Sormaghi MS, Heidari I, Golestan B and Amiri FS. Effects of cinnamon consumption on glycemic status, lipid profile and body composition in type 2 diabetic patients. *Int. J. Prev. Med.* 2012; 3(8): 531-6. - **72.** Anderson RA, Zhan Z, Luo R, Guo X, Guo Q, Zhou J, Kong J, Davis PA and Stoecker BJ. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. *J. Tradit. Complement. Med* .2016; 6(4), 332-336. doi: 10.1016/ j.jtcme.2015.03. 005. - **73.** Azimi P, Ghiasvand R, Feizi A, Hosseinzadeh J, Bahreynian M, Hariri M and Khosravi-Boroujeni H. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. *Blood Press.* 2016; 25(3): 133-40. doi: 10.3109/08037051.2015.1111020. - **74.** Sengsuk C, Sanguanwong S, Tangvarasittichai O and Tangvarasittichai S. Effect of cinnamon supplementation on glucose, lipids levels, glomerular filtration rate, and blood pressure of subjects with type 2 diabetes mellitus. *Diabetol. Int.* 2016; 7: 124-132. doi: 10.1007/s13340-015-0218-y. - **75.**
Gupta Jain S, Puri S, Misra A, Gulati S and Mani K. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: a randomized double -blind control trial. *Lipids Health Dis.* 2017; 16: 113. doi: 10.1186/s12944-017-0504-8. - **76.** Shishehbor F, Rezaeyan Safar M, Rajaei E and Haghighizadeh MH. Cinnamon consumption improves clinical symptoms and inflammatory markers in women with rheumatoid arthritis. *J. Am. Coll. Nutr.* 2018; 37(8): 685-690. doi: 10.1080/ 07315724. 2018.1460733. - 77. Ardalani HR, Hassanpour Moghadam M, Rahimi R, Soltani J, Mozayanimonfared A, Moradie M and Azizi A. Sumac as a novel adjunctive treatment in hypertension: a randomized, double-blind, placebo-controlled clinical trial *RSC Adv.* 2016; 6(14): 11507-11512. doi: 10.1039/C5RA22840A. - **78.** Saberi, M., Kazemisaleh D and Bolurian V. Effect of Olive Leaf on Mild to Moderate Hypertension Resistant to Normal Treatments. *J. Med. Plants* 2008; 7(27): 52-59. - **79.** Perrinjaquet-Moccetti T, Busjahn A, Schmidlin C, Schmidt A, Bradl B and Aydogan C. Food supplementation with an olive (*Olea europaea* L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. *Phytother. Res.* 2008; 22(9): 1239-42. doi: 10.1002/ptr.2455. - **80.** Susalit E, Agus N, Effendi I, Tjandrawinata RR, Nofiarny D, Perrinjaquet-Moccetti T and Verbruggen M. Olive (*Olea europaea*) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. *Phytomedicine* 2011; 18(4): 251-8. doi: 10.1016/j.phymed.2010.08.016. - **81.** Hermans MP, Lempereur P, Salembier JP, Maes N, Albert A, Jansen O and Pincemail J. Supplementation effect of a combination of Olive (*Olea europea* L.) leaf and fruit extracts in the clinical management of hypertension and metabolic syndrome. *Antioxidants* 2020; 9(9): doi: 10.3390/antiox9090872. - **82.** Mohtashami R, Fallah Huseini H, Nabati F, Hajiaghaee R Kianbakht S. Effects of standardized hydro-alcoholic extract of *Vaccinium arctostaphylos* leaf on hypertension and biochemical parameters in hypertensive hyperlipidemic type 2 diabetic patients: a randomized, double-blind and placebocontrolled clinical trial. *Avicenna J. Phytomed.* 2019; 9(1): 44-53. - **83.** Zolfaghari F, Pourzadi N, Sahbaei F, Zolfaghari F, Kazemi SS and Davari AR. The effect of blueberry solution on blood pressure and fasting blood sugar in patients with noninsulin dependent diabetes mellitus: a double-blind clinical trial. *Feyz* 2015; 19(4): 278-283. [DOR: 20.1001.1.2717204.2023.22.85.1.2 - **84.** Kianbakht S and Hashem-Dabaghian F. Antihypertensive efficacy and safety of *Vaccinium arctostaphylos* berry extract in overweight/obese hypertensive patients: a randomized, double-blind and placebocontrolled clinical trial. *Complement. Ther. Med.* 2019; 44: 296-300. doi: 10.1016/j.ctim. 2019.05.010. - **85.** Ghaffari S, Navabzadeh M, Ziaee M, Ghobadi A, Ghods R and Hashem-Dabaghian F. A randomized, triple-blind, placebocontrolled, add-on clinical trial to evaluate the efficacy of *Emblica officinalis* in uncontrolled hypertension. *Evid. Based Complement. Alternat. Med.* 2020; 2020: 8592869. doi: 10.1155/2020/8592869. - **86.** Carey RM, Moran AE and Whelton PK. Treatment of hypertension: a review. *JAMA*. 2022; 328(18): 1849-1861. doi: 10.1001/jama. 2022.19590. - **87.** Nadar SK and Lip GYH. Hypertension. Third ed., New York; Oxfor University Press; 2023. How to cite this article: Fallah Huseini H, Foroutan B, Kianbakht S. Clinical antihypertensive efficacy and safety of Iran plants: a systematic review. *Journal of Medicinal Plants* 2023; 22(85): 1-24. doi: 10.61186/jmp.22.85.1 # فصلنامه گیاهان دارویی Journal homepage: www.jmp.ir مقاله مروري اثربخشی و ایمنی بالینی ضد پرفشاری خون گیاهان ایران: یک مرور نظام مند حسن فلاح حسینی ۱، بهزاد فروتن ۲۰۳، سعید کیانبخت ۱، ** ا مرکز تحقیقات گیاهان دارویی، پژوهشکاه گیاهان دارویی، جهاد دانشگاهی، کرج، ایران ۲ مرکز تحقیقات بیماریهای واگیر و گرمسیری، دانشگاه علوم پزشکی ایرانشهر، ایرانشهر، ایران ۱۳ گروه فارماکولوژی، دانشکاه پزشکی، دانشگاه علوم پزشکی ایرانشهر، ایران ### اطلاعات مقاله چكيده گلواژگان: ایران پرفشاری خون فشار خون گیاه طب مکمل طب جایگزین مخففها: ALP گلوکز پلاسما ۲ ساعت بعد غذا؛ ABPM، پایش فشار خون در حالت حرکت؛ ALP، آلااین فسفاتاز؛ ALP، آلانین آمینو ترانسفراز؛ ABM، شاخص توده بدنی؛ BP، فشار خون؛ BV، قد خون؛ BUN، نیتروژن اوره خون؛ CBC، شمارش کامل خون؛ BMI، شاخص توده بدنی؛ BP، فشار خون؛ BS، قند خون؛ BUN، نیتروژن اوره خون؛ CPC، شمارش کامل خون؛ BMI، شاخص تحمینی فیلتراسیون گلومرولی؛ میوگلوبین؛ Cr، کر آتینین؛ Cr، کر آتینین؛ CVLT، چاپ دوم آزمایش یادگیری کلامی کالیفرنیا؛ PBP، فشار خون دیاستولی؛ EC، باز شونده در روده؛ HBAI، سرعت تخمینی فیلتراسیون گلومرولی؛ HTN، نوبوروتئین بالان، HDL، لیپوپروتئین با چگالی بالا؛ HDL، لیپوپروتئین با چگالی بالا؛ HDL، بیپوپروتئین بالا؛ HDL، سرعت ضربان قلب؛ HS، پایین؛ Mb، پروشتین واکنش دهنده CP، با حساسیت بالا؛ LDL، لیپوپروتئین با چگالی پایین؛ HDL، پروشتین واکنش دهنده کالی بلان؛ MDA، سیاهدانه؛ RS، فیرمعنیدار؛ Pre-DM، پروشتاری خون؛ HC، پرفشاری خون شریان ریوی؛ Pre-DM، مالون دی الدئید؛ TID، کلسترل خون شریان ریوی؛ Pre-DM، سیاهدانه؛ RD، فیرمعنیدار؛ RD، دارونیا؛ RDB، تصادفی شده دوسوبیخبر؛ Pre-DA، پرفشاری خون شریان ریوی؛ Pre-DA، مولکول چسبندگی بین سلولی Pre-DM، مولکول چسبندگی بین سلولی AD، محلول؛ Pre-DA، مولکول چسبندگی سلول رگی ۱۰ محلول؛ TTD، کارآزمایی کنترل و تصادفی شده؛ SBP، تاری گلیسریدها؛ SGO۳، عامل نمیستولی؛ RCT، بیان ریوی؛ TTD، دروز؛ TTD، عماره گوجه فرنگی؛ TTD، تری گلیسریدها؛ TNF، عامل نکروز TTD، تواساتین شری گلیسریدها؛ TNF، عامل نکروز TTS، تاشتی چایخوری؛ TTH، یوفشاری خون کنترل نشده. TNF، تاشتی چایخوری؛ TTH، قشاری خون کنترل نشده. * نو پسنده مسؤول: kianbakht@imp.ac.ir تاریخ دریافت: ۳۰ آذر ۱۴۰۱؛ تاریخ دریافت اصلاحات: ۵ بهمن ۱۴۰۱؛ تاریخ پذیرش: ۲ اسفند ۱۴۰۱ doi: 10.61186/jmp.22.85.1 © 2020. Open access. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/)