year 21, Issue 83 (9-2022)                   J. Med. Plants 2022, 21(83): 47-59 | Back to browse issues page

Research code: INSF Grant No: 95814237

XML Persian Abstract Print

1- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
3- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran ,
Abstract:   (795 Views)
Background: The cyanobacteria isolated and purified from soil can increase plant growth and productivity as bioelicitors. Objective: This study aimed was to investigate the effect of cyanobacteria as a bioelicitor on the production efficiency and essential oil composition of Mentha longifolia L. Methods: Two species of heterocystous cyanobacteria, Anabaena vaginicola ISB42 and Nostoc spongiaeforme ISB65, were used as bioelicitors to optimize the growth and productivity of Mentha longifolia L. Five pots were considered for each treatment and five others for the control plants. Treatment lasted for 100 days, and the treated plants were irrigated with 200 ml of cyanobacterial suspensions (0.2 %) every 21 days intervals. The experiment was performed in a randomized complete block design in an experimental greenhouse condition. After inoculation of treated plants with cyanobacterial bioelicitors, the vegetative factors, including shoot and root length, leaf area, as well as fresh and dry weight of plants were evaluated. In addition to growth factors, analyses of essential oils in studied plants were performed. Results: The results showed significant improvement in vegetative growth indices of the treated plants. Also, some economic and medicinal metabolites such as menthol, eucalyptol and phytol were increased in the essential oil of treated plants. The results also showed a significant increase in sesquiterpene hydrocarbons and oxygenated diterpenes in plants treated with cyanobacteria compared to controls. Conclusion: So, the use of cyanobacterial bioelicitors can be suitable to increase the yield as well as the economic and medicinal value of this medicinal plant.
Full-Text [PDF 580 kb]   (312 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2022/04/6 | Accepted: 2022/08/28 | Published: 2022/10/2

1. Mozaffarian V. Indentification of Medicinal and Aromatic Plants of Iran. Tehran: Farhang Moaser Publishers; 2013: 514-523.
2. Yahyaabadi Y, Mahmoudi Otaghvari A and Nazifi E. Phytochemical and palynological study of several species of Mentha L. in north of Iran. J. Plant Res. 2020; 33(4): 843-853.
3. Mokhtarikhah G, Ebadi MT and Ayyari M. Agro-morphological and phytochemical studies of spearmint landraces (Mentha spicata L.) in Iran. Ind Crops Prod 2022; 176: 114367. [DOI:10.1016/j.indcrop.2021.114367]
4. Anwar F, Abbas A, Mehmood T, Gilani AH and Rehman N. Mentha: a genus rich in vital nutra-pharmaceuticals- a review. Phytother. Res 2019; 33(10): 2548-2570. [DOI:10.1002/ptr.6423]
5. Farzaei MH, Bahramsoltani R, Ghobadi A, Farzaei F and Najafi F. Pharmacological activity of Mentha longifolia and its phytoconstituents. J. Tradit. Chin. Med 2017; 37 (5): 710-720. [DOI:10.1016/S0254-6272(17)30327-8]
6. Kouhestani F, Hashemi SA and Sabzevari S. An overview of insecticidal properties of Mentha longifolia L. in Iran. JNKUMS 2020; 11 (4): 93-97.
7. Kumar P, Mishra S, Malik A and Satya S. Insecticidal properties of Mentha species: A review. Ind. Crops Prod 2011; 34(1): 802-817. [DOI:10.1016/j.indcrop.2011.02.019]
8. Thakur S, Walia B and Chaudhary G. Mentha arvensis (Pudina): A review based upon its medicinal properties. Res. J. Pharmacognosy. Phytochem. 2021; 13 (3): 143-148. [DOI:10.52711/0975-4385.2021.00024]
9. de Sousa Guedes JP, da Costa Medeiros JA, de Souza e Silva RS, de Sousa JMB, da Conceição ML and de Souza EL. The efficacy of Mentha arvensis L. and Mentha piperita L. essential oils in reducing pathogenic bacteria and maintaining quality characteristics in cashew, guava, mango, and pineapple juices. Int. J. Food Microbiol. 2016; 238: 183-192. [DOI:10.1016/j.ijfoodmicro.2016.09.005]
10. Hou T, Sans SS, Li H, Xing Y, Nanda A, Netala VR and Zhang Z. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Biosci 2022; 47: 101716. [DOI:10.1016/j.fbio.2022.101716]
11. Kokate P, Purohit AP, Gokhale SB. Pharmacognosy, 20th Ed, Nirali Publication, India; 2002.
12. Chavan SP, Lokhande VH, Nitnaware KM and Nikam TD. Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl. Microbiol. Biotechnol 2011; 89(6): 1701-1707. [DOI:10.1007/s00253-010-3014-4]
13. Goudarzian A, Pirbalouti AG and Hossaynzadeh M. Menthol, balance of menthol/menthone, and essential oil compositions of Mentha × Piperita L. under foliar-applied chitosan and inoculation of arbuscular mycorrhizal fungi. J Essent Oil Bear Pl 2020; 23(5): 1012-1021. [DOI:10.1080/0972060X.2020.1828177]
14. Waterbury JB. The cyanobacteria-isolation, purification and identification. Prokaryotes 2006; 4: 1053-1073. [DOI:10.1007/0-387-30744-3_38]
15. Singh JS, Kumar A, Rai AN and Singh DP. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol 2016; 7: 529. [DOI:10.3389/fmicb.2016.00529]
16. Seyed Hashtroudi M, Ghassempour AR, Riahi H, Shariatmadari Z and Khanjir M. Endogenous auxins in plant growth promoting cyanobacteria - Anabaena vaginicola and Nostoc calcicola. J. Appl. Phycol 2013; 25: 379-386. [DOI:10.1007/s10811-012-9872-7]
17. Santini G, Biondi N, Rodolfi L and Tredici MR. Plant biostimulants from cyanobacteria: an emerging strategy to improve yields and sustainability in agriculture. Plants (Basel). 2021; 10(4): 643. [DOI:10.3390/plants10040643]
18. Abinandan S, Subashchandrabose SR, Venkateswarlu K and Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit. Rev. Biotechnol 2019; 39(8): 981-998. [DOI:10.1080/07388551.2019.1654972]
19. Lichtfouse E. Genetic engineering, biofertilisation, soil quality and organic farming. Springer, Dordrecht; 2010. [DOI:10.1007/978-90-481-8741-6]
20. Bharti A, Prasanna R, Kumar G, Nain L, Rana A, Ramakrishnan B and Singh Shivay Y. Cyanobacterial amendment boosts plant growth and flower quality in Chrysanthemum through improved nutrient availability. Appl Soil Ecol 2021; 162: 103899. [DOI:10.1016/j.apsoil.2021.103899]
21. Zarezadeh S, Riahi H, Shariatmadari Z and Sonboli A. Effects of cyanobacterial suspensions as bio-fertilizers on growth factors and the essential oil composition of chamomile, Matricaria chamomilla L. J. Appl. Phycol. 2020; 32 (2): 1231-1241. [DOI:10.1007/s10811-019-02028-9]
22. Chookalaii H, Riahi H, Shariatmadari Z, Mazarei Z and Seyed Hashtroudi M. Enhancement of total flavonoid and phenolic contents in Plantago major L. with plant growth promoting cyanobacteria. J. Agric. Sci. Technol 2020; 22(2): 505-518.
23. Shariatmadari Z, Riahi H, Abdi M, Seyed Hashtroudi M and Ghassempour AR. Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. J. Appl. Phycol 2015; 27 (6): 2279-2287. [DOI:10.1007/s10811-014-0512-2]
24. Riahi H, Shariatmadari Z, Khanjir M and Azizi A. Effect of Anabaena vaginicola inoculum on growth of pot plants. Acta Hortic 2013; 1013:507-513. [DOI:10.17660/ActaHortic.2013.1013.63]
25. Andersen RA. Algal culturing techniques. Elsevier academic Press; 2005.
26. Komárek J. Süßwasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota 3. Teil / 3rd part: Heterocytous Genera. Springer Spektrum; 2013. [DOI:10.1007/978-3-8274-2737-3]
27. Amini Sh, Ghorbani Nohooji M, Khani M, Labbafi MR and KhalighiSigaroodi F. Biological activity of some essential oil constituents in four Nepeta L. species against Sitophilus oryzae L. Biodiversitas 2019; 20(2): 338-343. [DOI:10.13057/biodiv/d200205]
28. Anonymous. European Pharmacopoeia, 5th edition. Strasbourg- version 5.1. EDQM; 2005.
29. da Costa OB, Del Menezzi CHS, Benedito LEC, Resck IS, Vieira RF and Bizzo HR. Essential oil constituents and yields from leaves of Blepharocalyx salicifolius (Kunt) O. Berg and Myracrodruonurundeuva (Allemao) collected during daytime. Int. J. For. Res. 2014; 982576, 6 p. [DOI:10.1155/2014/982576]
30. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation: Carol Stream, Texas; 2007.
31. McLafferty FW and Stauffer DB. The Wiley / NBs registry of mass spectral data. Wiley, New York; 1989.
32. Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak H, Kręgiel D, Sen S, Sharifi-Rad M, Acharya K, Sharifi-Rad R, Martorell M, Sureda A, Martins N and Sharifi-Rad J. Plants of genus Mentha: from farm to food factory. Plants (Basel) 2018; 7(3): 70. [DOI:10.3390/plants7030070]
33. Pan B, Bai YM, Leibovitch S and Smith DL. Plant growth promoting rhizobacteria and kinetin as ways to promot corn growth and yield in a short growing season area. Eur. J. Agron 1999; 11: 179-186. [DOI:10.1016/S1161-0301(99)00029-5]
34. Shariatmadari Z, Riahi H, Seyed Hashtroudi M, Ghassempour AR and Aghashariatmadary Z. Plant growth promoting cyanobacteria and their distribution interrestrial habitats of Iran. Soil. Sci. Plant Nutr 2013; 59:535-547. [DOI:10.1080/00380768.2013.782253]
35. Santini G, Rodolfi L, Biondi N and et al. Effects of cyanobacterial-based biostimulants on plant growth and development: a case study on basil (Ocimum basilicum L.). J. Appl. Phycol. 2022; 34:2063-2073. [DOI:10.1007/s10811-022-02781-4]
36. Gonçalves AL. The use of microalgae and cyanobacteria in the improvement of agricultural practices: a review on their biofertilising, biostimulating and biopesticide roles. Appl. Sci. 2021; 11: 871. [DOI:10.3390/app11020871]
37. Tan CY, Dodd IC, Chen JE and et al. Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: An overview. J. Appl. Phycol. 2021; 33:2995-3023 [DOI:10.1007/s10811-021-02475-3]
38. Mobli M and Baninasab B. Effect of Indole butyric acid on root regeneration and seedling survival after transplanting of three Pistacia species. J. Fruit Ornam. Plant. Res. 2009; 17(1): 5-13.
39. Hajlaoui H, Trabelsi N, Noumi E, Snoussi M, Fallah H, Ksouri R and Bakhrouf A. Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J. Microbiol. Biotechnol 2009; 25: 2227-2238. [DOI:10.1007/s11274-009-0130-3]
40. Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A and Ozkan H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem 2007; 103: 1449-1456. [DOI:10.1016/j.foodchem.2006.10.061]
41. Croteau RB, Davis ME, Ringer KL and Wildung MR. Menthol biosynthesis and molecular genetics. Naturwissenchaften 2005; 92: 562-77. [DOI:10.1007/s00114-005-0055-0]
42. Yin C, Liu B, Wang P, Li X, Li Y, Zheng X, Tai T, Wang C and Liu B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br J. Pharmacol. 2020; 177(9): 2042-2057. [DOI:10.1111/bph.14967]
43. Alamgir ANM. Therapeutic Use of Medicinal Plants and their Extracts: Volume 2: Phytochemistry and Bioactive Compounds (Progress in Drug Research Book 74). ‎Springer International Publishing AG, Bangladesh; 2018. [DOI:10.1007/978-3-319-92387-1]
44. Hristozkova M, Gigova L, Geneva M, Stancheva I, Vasileva I, Sichanova M and Mincheva J. Mycorrhizal fungi and microalgae modulate antioxidant capacity of basil plants. J. Plant Prot. Res 2017; 57(4): 417-426. [DOI:10.1515/jppr-2017-0057]
45. Hristozkova M, Gigova L, Geneva M, Stancheva I, Velikova V and Marinova G. Influence of mycorrhizal fungi and microalgae dual inoculation on basil plants performance. Gesunde Pflanz 2018; 70(2): 99-107. [DOI:10.1007/s10343-018-0420-5]
46. Hormozinejad E, Zolfaghari M, Mahmoodi Sourestani M, Enayati Zamir N. Effects of plant growth promoting rhizobactria and chemical fertilizer on growth, yield, flowering, physiological properties, and total phenolic content of Calendula officinalis L. Iranian Journal of Medicinal and Aromatic Plants Research 2018; 34(4): 684-696.
47. Dewick PM. Medicinal natural products: a biosynthetic approach, 3rd Edition. John Wiley & Sons, Ltd, Publication, United Kingdom; 2009.
48. Ahmadi S, Mehrab Y and Behzad H. Foliar application effects of salicylic acid and indole acetic acid on the essential oil composition of Mentha piperita L. and Melissa officinalis L. Journal of Plant Process and Function 2018; 7(26): 251-262.
49. Del Roario Cappellari L, Santoro M, Schmidt A, Gershenzon J and Banchio E. Induction of essential oil production in Mentha × piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. Plant. Physiol. Biochem. 2019; 141: 142-153. [DOI:10.1016/j.plaphy.2019.05.030]
50. Riahi L, Cherif H, Miladi S, Neifar M, Bejaoui B, Chouchane H, Masmoudi AS, Cherif A. Use of plant growth promoting bacteria as an efficient biotechnological tool to enhance the biomass and secondary metabolites production of the industrial crop Pelargonium graveolens L'Hér. under semi-controlled conditions. Ind Crops Prod 2020; 154: 112721. [DOI:10.1016/j.indcrop.2020.112721]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.