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Abstract

More than 12,000 alkaloids are known in plants, mostly used as medicine with a world market
value of about 4 billion USS. Opium poppy, Papaver somniferum, is the most important economic
source of morphinane alkaloids such as morphine, codeine, thebaine, narcotine and papaverine
that are exploited by the pharmaceutical industry as analgesics, antitussives and anti-spasmodics.
With regard to increasing demand for these compounds, the aim of this review is presenting an
outlook of classical breeding programs that successfully applied for enhancing the alkaloid
content of opium poppy. The latest biotechnological approaches also are discussed to give an
outlook for future trends and possibilities.
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Introduction

Poppy seems to be one of the few species
which was utilized, even as cultivated plant, in
prehistoric times. There is no doubt about the
evidence that the poppy was also cultivated by
Sumerians, Babylonians and Assyrians about
3—6 thousand years BC [1]. The Opium poppy
Papaver somniferum (Fig. 1) is a multipurpose
crop which is used as a medicinal or
ornamental plant, as well as a source for seeds
and seed oil. Opium, as dried latex of unripe
capsules of P. somniferum, contains more than
80 isoquinoline alkaloids. The main alkaloids
derived in opium are morphine (4-21%),
followed by codeine, thebaine, papaverine,
noscapine, and narceine [2]. The Persian
genius Ebne Sina, known in the West as
Avicenna (980-1037), who was revered as the
"prince and chief of physicians" and "the
second teacher after Aristotle," recommended
opium and plants of the nightshade family as
analgesics and anaesthetics [3, 4]. The
morphinanes  (5-ring  benzylisoquinoline
alkaloids) include morphine, codeine, thebaine

and derivatives are the most important
alkaloids produced by the opium poppy.
Morphine has long occupied an eminent
position on the list of useful drugs. Morphine
and codeine are prescribed analgesics and
cough-suppressing drugs [5]. Morphine exerts
its effects either by hyperpolarizing or
inhibiting postsynaptic neurons, probably by
increasing K efflux, or by reducing Ca®’
influx into presynaptic nerve endings and
thereby reducing transmitter release, including
acetylcholine, norepinephrine, dopamine,
serotonin and substance P [6]. Morphine is
metabolized into morphine-3-glucuronide and
morphine 6-glucuronide (M6G) in the human
body; which the later one possesses analgesic
activity.

Other alkaloids from poppy species have
various uses: noscapine has antitussive and
antitumorogenic properties; papaverine is a
vasodilator and smooth muscle relaxant;
sanguinarine is antimicrobial and anti-
inflammatory [5, 7].

Fig. 1- Opium poppy, P. somniferum and different parts of its vegetative and generative organs [8]
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The opiates are industrial commodities of
plant origin for which there is still
considerable demand. Globally, opium poppies
are legally cultivated on around 40,000 ha
annually. The major supplier of opium poppies
is Tasmania, supplying around 40% of the
market. GlaxoSmithKline, Tasmanian
Alkaloids and Johnson-Matthey operate fully
integrated supply chains for opiate production.
Levels of production are controlled by the UN
Single Convention on Narcotic Drugs, which
limits production to reasonable saleable
quantities  with  allowance made for
contingency stocks [9].

In the last few decades, the demand for
poppy-derived alkaloids has raised
continuously, in particular the need for
thebaine, which has increased by ~ 67% in the
last 6 years [10].

With five centers of chirality, the structures
of morphinane alkaloids present a complexity
that renders commercial synthesis uneconomic
[11] and cultivation of poppy, in spite of some
limitation, continues to be the most effective
means to produce opiate analgesics [12].
Higher alkaloid content in the poppy crop
would enhance the financial return to growers
and make the industry more competitive [13].
For these purposes, different efforts by
conventional and new  Dbiotechnological
methods have been applied to enhance alkaloid
content of P. somniferum. Thus in this
communication we will try to present an
overview of morphinanes biosynthesis in
opium poppy and different aspects of genetics,
breeding, tissue culture and metabolic
engineering of these valuable compounds.

Benzylisoquinoline alkaloids and biosyn-
thesis of morphinanes

The benzylisoquinoline alkaloids comprise
a group of about 2,500 compounds, which can
be divided into nine classes: the rhoeadines,
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protopines, pavines/isopavines, phthalideisog-
uinolines, protoberberines, the true
benzylisoquinolines, the aporphines, the
benzophenanthridines and the morphinanes
[14]. Common to all the members of these
classes are the first steps in the biosynthetic
pathway that lead to the central intermediate
(S)-reticuline (Fig. 2).

The presence of morphinane alkaloids
(thebaine, codeine and morphine), together
with the secophthalidisoquinoline alkaloids
(narceine, nornarceine, narceinimide),
phthalidisoquinoline  alkaloids  (narcotine,
narcotoline), benzyltetrahydroisoquinoline
alkaloids (reticuline, laudanosine, codamine,
tetrahydropapaverine) and aromatic
benzylisoquinoline alkaloids (papaverine,
pacodine) is  characteristic = of  Papaver
somniferum L. The carbon skeleton of benzy-
lisoquinoline alkaloids is derived from two
molecules of tyrosine [15, 16]. The aromatic
amino acids, phenylalanine, tyrosine and
tryptophan are formed via the shikimate pathway.
The availability of tyrosine for alkaloid
biosynthetic =~ pathways is an  important
determinant of the endogenous level of alkaloids.

The biosynthesis of benzylisoquinolines
(BIAs) starts with the condensation of two
tyrosine derivatives leading to the first
tetrahydrobenzylisoquinoline ~ norcoclaurine
[17, 18]. Subsequent reactions include the
methylation at position 6 of norcoclaurine by
norcoclaurine 6-Omethyltransferase (6-OMT),
the methylation of the nitrogen by coclaurine
N-methyltransferase =~ (CNMT), and the
hydroxylation at the 3’-position by the P450
monooxygenase (S)-N-methylcoclaurine
3’-hydroxylase (Cyp80B1). One additional
methylation at the 4’position by 3’-hydroxy-N-
methylcoclaurine 4’-O-methyltransferase
(4-OMT) finally leads to (S)-reticuline. From
this central intermediate the pathway
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Fig. 2- Benzylisoquinoline biosynthesis pathway. NCS (norcoclaurine synthase); 6-OMT (O-methyl
transferase); NMT (N-methyltransferase); CPY80B3 (cytochrome P450); 4OMT (O-methyl transferase) BBE
(berberine bridge enzyme); STS (salutaridinol synthase); SAT (salutidarinol-7-O-acetyltransferase), COR
(codeine reductase) [19]

bifurcates into the different benzylisoquinoline
classes and a multitude of rearrangements and
modifications of the benzylisoquinoline
backbone takes place leading to the high
structural  diversity of these alkaloids.
Interestingly, whereas the biosynthesis of all
classes of benzylisoquinolines starts directly
from  (S)-reticuline, the conversion of
sterecochemistry to  (R)-reticuline is a
prerequisite for the production of morphinans.
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A series of at least 17 enzymatic steps
contributed in the biosynthesis of morphine.
The latter steps in the pathway that lead
specifically from (S)-reticuline, a central
intermediate  of  isoquinoline  alkaloid
biosynthesis, to morphine (Fig. 2) involve
three NADPH-dependent oxidoreductases
[11], most probably three cytochromes P-450,
and an acetyl-CoA-dependent
acetyltransferase [11, 19].
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Although more than 60 species or lower
taxonomic units of the genus Papaver have
been studied, the presence of morphine has
been only detected in two species from the
section of Mecones , i.e. P. somniferum L. and
P. setigerum DC. The presence of morphine
has been also demonstrated in other plants,
such as hay and lettuce and recently detected
in mammalian tissues. Since the isolation of
morphine by Serturner in 1805, a large number
of isoquinoline alkaloids have been isolated
from the opium poppy [21, 22]. Alkaloid
biosynthesis and accumulation is constitutive,
organ and cell type-specific processes in the
plant. Morphine, noscapine and papaverine are
generally the most abundant alkaloids in aerial
organs, whereas sanguinarine typically
accumulates in roots [23].

Alkaloid biosynthetic enzymes and cognate
transcripts have been specifically localized to
sieve elements of the phloem and associated
companion cells, respectively [24, 25]. In-situ
localization of alkaloid biosynthetic gene
transcripts indicated that seven biosynthetic
enzymes (60OMT, CNMT, CYP80B, 4OMT
and BBE in reticuline biosynthesis, and SAT
and COR in a morphine pathway) are localized
in sieve elements in opium poppy and
corresponding gene transcripts were localized
in the supporting companion cells [24, 26].
However, another = immunocytochemical
analysis clearly showed that 4OMT and SAT
were localized in phloem parenchyma cells,
and COR, the penultimate step in morphine
biosynthesis, is localized in laticifers (a vessel
like series of long cells, which accompany
vascular tissues throughout the plant and
contain a milky sap called latex.), which is the
site of morphinane alkaloid accumulation [27].

Genetics and Breeding
Papaver somniferum (2n=22) is a member
of the genus Papaver, which includes some
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100 species and is affiliated to the section
Mecones comprising five species, among
which Papaver setigerum (2n=44) is a close
relative and probably the ancestor of the
opium poppy [28]. Papaver somniferum is
considered to be a predominantly self-
pollinating species with various rates of out-
crossing depending upon variety and
environmental factors; large colourful flowers
with numerous stamens and large amounts of
pollen attract insects, especially bees; the
transfer of pollen from one flower to another
might also be performed by wind [29]. The
divergent and long history of domestication
and breeding of P. somniferum has resulted in
the development of several different land
races, chemotype varieties and cultivars
adapted to wvarious uses and climatic
conditions. Cultivation of the plant therefore
covers a wide geographical area from Bombay
to Moscow in the Northern hemisphere and
Tasmania in the Southern hemisphere [30].
Alkaloid production is controlled by the plant
genotype and by environmental factors. For
example cool-grown P. somniferum contains
more morphine but has lower alkaloid content
than warm-grown. Thus secondary metabolite
accumulation generally is affected by water
availability, exposure to soil microorganisms
and variations in soil pH and nutrients [31].
Commercial cultivation of poppy have
been envisaged several limitation such as
availability of water for irrigation and need to
fertile and free-draining soil, which is not
overly acidic [13]. On the other hand several
diseases like powdery mildew, root rot and
leaf blight occurs in poppy. Poppy crops also
suffer heavily from mildew caused by
Peronospora arborescens and other parasitic
agents. Unfortunately, at least there is no
report about occurrence of completely
resistance genetic stocks, in India [20]. Thus to
reduce the build up of diseases in
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commercially grown poppies, crop must be
grown with at least a three year rotation,
before again culturing of them [12]. Regarding
of these limitations, breeding strategies, not
only must be enhancing morphinanes yield,
but also considering the improvement of
different agronomic traits.

The existence of substantial variations in
the available gene pool of a species is
necessary for any successful breeding
program. Several independent studies on the
evaluation of the genetic variation in the
cultivated germplasm of P. somniferum
reached the conclusion that only a limited
variation prevails in Indian genetic stocks and
European stocks for most agronomic and
chemical traits. This is related to the narrow
genetic base of genotypes with common
ancestry. The genetic and breeding aspects of
opium poppy were investigated more
intensively in Europe in the early of 1960s and
during the past decade in India [20].

Varietal, mass and pure line selections
have been applied by several breeders of
opium poppy for the development of improved
cultivars [32, 33]. However, the most widely
used method which has produced several
commercial cultivars is the pedigree selection
by which, through hybridization between
parents with different desirable characteristics,
led to development of few lines. The pedigree
method has been wused successfully for
increasing the yield of capsules, opium and
seeds, the morphine content and the lodging
resistance. This method, however, markedly
reduces the genetic variability and contributes
to narrowing the genetic basis of the cultivated
germplasm [34].

Substantial amounts of heterosis have been
observed for morphine and seed yield, as well
as for most of their components and a current
goal is the development of hybrid species
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exhibiting heterosis for these characteristic.
The implementation of these results into the
production of commercial high-performing
hybrid cultivars is, however, hampered by the
lack of a genetic system promoting cross-
pollination. Genetic-cytoplasmic male sterility
is the most appropriate and widely used
system in several crops for the production of
hybrid cultivars. Induced male sterile mutants
have been obtained in plant populations of
opium poppy, either by irradiation with
gamma rays [35], or by interspecific
hybridization [36], but these mutants were not
characterized. In the absence of male sterility,
self-incompatibility can be used for the hybrid
production. The use of hybrid cultivars in this
crop is the most potent and rapid breeding
strategy for combining several desirable
characteristics from different parents and for
exploiting the considerable amount of
heterosis reported for morphine and seed
yields [34].

There are also some reports about heterosis
in P. bractatum. Thus heterotic effects can be
used in a breeding program aimed at
increasing the thebaine yield. This species is
suited for the production of hybrids because of
the very large quantities of seeds that are
produced in each capsule due to its self
incompatibility nature. A significant increase
in the thebaine yield (more than three times)
than that of the best parent in the cross, was
found in one F1 hybrid of P. bractatum [37].

As an interesting method, artificial
polyploidy induction can be useful for
changing morphological characteristics [38,
39] and secondary metabolite production of
plants [40]. Polyploidization is often
accompanied by increased cell size and
conspicuous changes in secondary
metabolism. Where vegetative plant organs are
the source of secondary metabolites, as is the
case with most medicinal plants, ploidy
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manipulations such as direct chromosome
doubling or allopolyploidization provide a
rapid means to realize enhanced production of
phytopharmaceuticals [40]. Triploid and
tetraploid plants of P. somniferum, showed up
to 100% increase in morphine concentration
[40]. In P. bracteatum 3x and 4x plants had
shown higher thebaine content (respectively,
4.9% and 8.8% dry weight) than diploid (2.4%
dry weight) counterparts, but polyploid plants
were later in flowering and their seed setting
was very poor, especially in triploids [41, 42].
The polyploidy therefore seems of little use for
breeding for high seed yield, but it might be
considered for increasing morphinane content,
which is the primary value than the plant
biomass component and will facilitate the
extraction process.

Spontaneous and mutagen-induced
mutants have also been reported in
P. somniferum. Such mutants can be used
directly as new cultivars: the ‘Soma’ variety
was released from a spontaneous mutant in the
variety “Indra” [43]. In other cases, the
mutants have been used, frequently as parents
in breeding programs [44]. The occurrence of
biochemical mutants induced by mutagenic
treatments showed the good potential of this
approach in altering the alkaloid profile of
plants. By the use of mutagenic agents such as
gamma ray or chemical agents, some breeder
could produce opium poppy plants with
different characteristics of male sterility,
opium less, high morphine yield, and high
number of capsules per plant [45]. A codeine
chemotype in which the demethylation to
morphine is blocked would be most valuable
both to the pharmaceutical industry and for the
prevention of the illegal use of morphine.

A world-wide effort was also invested
during the 1970s to domesticate and develop
P. bracteatum as an alternative source to the
opium poppy for codeine production. The
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most widely used opiate in medicine, codeine,
is mainly produced from the P. somniferum.
However, the plants major alkaloid, morphine,
and its highly addictive derivative heroin are
also used illegally as drugs. Codeine can also
be produced from thebaine, the major alkaloid
of P. bracteatum. The species P. bracteatum,
Persian poppy, diploid 2n=14, is considered to
be a potential alternative to opium poppy for
codeine production due to its high content of
thebaine and complete absence of morphine.
Thebaine is a precursor of codeine and can be
easily converted to codeine by the
pharmaceutical industry. In some populations
of this species, the capsules and roots contain
almost  exclusively thebaine; thus the
extraction and purification of the raw material
is relatively easy. The addiction potential of
thebaine or its derivatives and of the minor
alkaloids reported for P. bracteatum is
negligible and no cases of abuse or illicit
production of thebaine have been reported
[37]. Thus whenever the climatic conditions
are suitable for the growth of P. bracteatum it
may advantageously replace the traditional
P. somniferum.

P. bracteatum is naturally distributed in
high altitudes from 1500 to 2500m. The
species is found in three distinct areas: the
Alborz Mountains north of Tehran, in the
Iranian Kurdistan and on the Northern slope of
the Caucasus [37]. A population called Arya II
with a thebaine content of 3.6% of dry mater
was found in Western Iran by Lalezari et al.
[46].

However substantial progress, in the case
of poppy species, has been achieved, mainly
through genetic, during the last 30 years in
France, where the yield of morphine has
increased from 4.5 kg/ha in 1961 to 10.5 kg/ha
in 1991 [34]. But unfortunately no correlations
have observed between the alkaloid content
and the yield of dry matter. Although

¥


https://dor.isc.ac/dor/20.1001.1.2717204.2010.9.35.3.3
https://jmp.ir/article-1-264-en.html

[ Downloaded from jmp.ir on 2026-02-04 ]

[ DOR: 20.1001.1.2717204.2010.9.35.3.3]

Application of ...

conventional plant breeding has produced a
doubling in poppy alkaloid content over the
last two decades, however continued rapid
improvement in morphinan yields through
conventional breeding will likely be limited
[13] and these methods did not give the
desirable level of improvement for several
reasons, including low genetic diversity,
sterility, long generation time, perennial nature
and complex biosynthetic pathways involved
[47]. Thus today we need to use of new
biotechnological methods (in combination to
classic breeding programs) to efficiently
manipulate morphinanes production in poppy
plant.

Role of Biotechnology in morphinanes
production

With regard to medicinal plants,
biotechnology could be described as a method
for enhancing the formation and accumulation
of desirable natural products, with possible
product modification in medicinal plants.
Micropropagation, cell and hairy root culture
as well as gene technology are all important
techniques for plant propagation, but these are
mostly used to improve the production and
yield of desired natural products.

Plant cell and tissue cultures

Some compounds, such as shikonine and
paclitaxel, can be produced with the
technology of large-scale plant cell culture.
However, other secondary metabolites,
particularly alkaloids, are produced at low
concentrations in plant cell cultures. The low
or lack of productivity of these desired
compounds can be explained by an insufficient
level of cell differentiation to allow a
production of secondary metabolites. In plants,
there is a clear correlation between cellular
differentiation and secondary metabolism.
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Tissue cultures of different explants of the
poppy plant (i.e. seedling hypocotyls, seedling
roots, stalk and capsule) have been reported in
the literatures [48]. Callus tissues have been
obtained and the presence of alkaloids has
been detected. However, other investigations
have demonstrated the absence of alkaloids in
P. somniferum tissue cultures. These conflicts
reports can be due to: the use of different
analytical methods with varied sensibilities,
the use of different P. somniferum cultivars
and the analysis of somatic tissue
cultures at various stages of differentiation
[49]. Industrial production of opiates from
tissue culture is dependent on the large
accumulation of alkaloids in a cell culture
medium. While there has been great success in
plant-cell culture in terms of cells with high
yields of isoquinolines, from a commercial and
pharmaceutical viewpoint, the morphinans
have proved difficult to produce in plant-cell
cultures [50]. As an improving strategy
treatment with elicitor was not successful in all
cases: codeine biosynthesis, for example, has
not yet been achieved. However, compounds
sharing the same precursors and intermediates,
such as the antimicrobial alkaloid
sanguinarine, may accumulate in quite high
amounts. Using cell cultures of P. somniferum,
the production of sanguinarine was shown to
be elicited by preparations from fungal
mycelia [51, 52]. Likewise, Archambault et al.
[53] were able to obtain a twofold stimulation
in the production of the antimicrobial
compound, sanguinarine, through the use of a
chitosan elicitor in P. somniferum cell cultures.

However numerous studies had shown that
the production of morphinan alkaloids via in
vitro cultures requires organogenesis of tissues
in cultures. The induction of cell
differentiation by the addition of exogenous
growth regulators in the culture medium
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improves alkaloid production. However, this
process is time-consuming and therefore it can
be used only for the production of compounds
with a high value. The transformation of
medicinal  plants using  Agrobacterium
rhizogenes to form hairy root cultures has the
potential benefits of fast growth and rates of
alkaloid production equal to or greater than
that found for the intact plant. Moreover, hairy
root cultures can be scaled-up for bioreactor
production to allow for the large-scale
recovery of alkaloids or other compounds with
pharmacological activities [49].

Hairy root cultures of many other
medicinal plants obtained by transformation
with A. rhizogenes were examined as potential
sources of high-value pharmaceuticals [54].
For the first time, P. somniferum hairy root
cultures have been established after
transformation of hypocotyls with the
hypervirulent A. rhizogenes strain, LBA 9402
[55]. The total alkaloid content (morphine,
codeine and sanguinarine) was higher in hairy
roots (0.46 = 0.06 % D.W.) than in
untransformed roots (0.32 = 0.05 % D.W.) and
some of the alkaloids were excreted into the
liquid culture medium. Rostampur et al. [56]
were shown that the content of different
benzylisoquinoline alkaloids produced by
Persian poppy (P. somniferum) hairy roots was
identical wild-type roots. Transformed root
cultures of P. somniferum and California
poppy, Eschscholzia californica had higher
growth rate than wild roots and displayed
benzilisoquinoline profile that were virtually
identical to those of wild-type roots [57].

Tissue cultures of P. bracteatum have also
been studied for thebaine production.
Unfortunately, little success has been achieved
in  producing the desirable alkaloid in
substantial amounts in cell or tissue culture. As
for P. somniferum, a different alkaloid profile
is obtained in culture, compared with plants.
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Thebaine was present in only trace amounts in
cell cultures or absent. The self-
incompatibility system in this species does not
allow the creation of pure lines through
selfing. Thus, using tissue culture as a method
for mass micropropagation in P. bracteatum
might be useful for rapid multiplication of
superior individuals [37].

Production of transgenic poppy and
metabolic engineering

In order to produce transgenic plants one
must be able to: (1) stably integrate foreign
DNA into its genome; and (2) regenerate
fertile plants from transformed tissues. Unlike
the transformation difficulty, it is now possible
to do both of these in opium poppy. Long-term
callus and suspension cultures of opium poppy
have been maintained on certain media in
several laboratories. Both roots and shoots
have been regenerated from callus [58];
however, a much simpler method for
regenerating poppy suspensions through
somatic embryogenesis has been developed
[59]. Hosseini [48] successfully regenerated
transgenic poppy plants from meristemoid
calli of hypocotyls explants (Fig. 3).

The availability of reliable transformation/
regeneration systems for opium poppy and the
cloning of alkaloid pathway genes mean that it
should be possible to apply metabolic
engineering to alter the quantity and quality of
alkaloids in this species.

A genetically modified opium poppy that
produces the pharmaceutical precursor,
thebaine, instead of the narcotic alkaloids
morphine and codeine, has recently been
described [60]. Since thebaine (in contrast to
morphine) cannot be easily converted to heroin
(an acetyl derivative of morphine), the
genetically altered crop provides a good
solution to hamper the utilization of opium
poppy as a source for the illicit drug market.
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Fig. 3- P. somniferum transgenic plants regeneration frome hypocotyl explants. Hypocotyl explant on the B5
medium (a), callus induction (b), meristemoid calli and somatic embryogenesis (¢, d and e), germination and
development of a somatic embryoid (f and g), root induction and regeneration of transgenic opium poppy (h)
[48]

Recently, an industrial elite line of poppy
was genetically engineered to modify the
alkaloid content of the plant by overexpression
of the (§)- N -methylcoclaurine 3" -
hydroxylase [61]. The resulting transgenic
plants contained up to 450% more alkaloids in
their latex compared to untransformed plants.
Overexpression of codeinone reductase in
poppy led to a 30% increase of morphinan
alkaloid content on a dry weight basis in
transgenic plants [62]. In a different
experiment, the berberine bridge enzyme
(bbe), which is the first enzyme of the
sanguinarine biosynthesis branch, was silenced
in poppy [63]. This resulted in an increase in
the concentration of several pathway
intermediates from all biosynthetic branches of
benzylisoquinoline alkaloids in the latex of
transgenic plants. Surprisingly, the transgenic
plants also exhibited an increase in
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concentration of (S)-scoulerine. Silencing of
BBE in California poppy (Eschscholzia
californica) resulted in increased levels of (S)-
reticuline [64].

Silencing of salutaridinol O-acetyltransfer-
ase (SAT), an enzyme acting in the same
branch caused no accumulation of its substrate
salutaridinol but of salutaridine, the substrate
of the previous enzyme [65, 66].
Overexpression of SAT increased the yield of
morphine indicating a rate limiting function of
this enzyme [65]. The data support the
existence in the morphine branch of one or
more  metabolons, ie.  multi-enzyme
complexes that allow the internal hand-over of
pathway intermediates and are disrupted by the
removal of one enzyme.

Codeine reductase is the penultimate step
in morphine biosynthesis. Opium poppy was
transformed with a chimeric cDNA hairpin


https://dor.isc.ac/dor/20.1001.1.2717204.2010.9.35.3.3
https://jmp.ir/article-1-264-en.html

[ Downloaded from jmp.ir on 2026-02-04 ]

[ DOR: 20.1001.1.2717204.2010.9.35.3.3]

RNA construct designed to silence codeinone
reductase. However, silencing of codeinone
reductase resulted in the accumulation of (S)-
reticuline, but not the substrate codeinone or
other compounds on the pathway from (S)-
reticuline to codeine [67]. Allen and
coworkers postulated that this accumulation
could be due to several factors. First,
accumulation of codeinone and morphinone
could result in negative feedback on one of the
enzymes, such as the reductase responsible for
the reduction of (S)-reticuline to 1, 2-
dehydroreticuline. Also, the biosynthetic
intermediates and final product may regulate
the transcription of pathway enzymes, through
analysis of the transcript levels of a number of
the morphine biosynthetic enzymes showed no
change in suppressed plants. Finally,
codeinone reductase could be a part of a
multienzyme complex, which can't be
functioned when one of the enzymes is
removed. This study highlights that the
complex metabolic networks found in plants
are not easily or predictably redirected. The
regulation of benzylisoquinoline alkaloid
metabolism is complex and our understanding
of opium poppy biochemistry at the molecular
level can be advanced with genetic
transformation and metabolic engineering
biotechnology [68].

Results of over expression of two genes
(sat and cor) under CaMV35s promoter
showed that transgenic plants had different
metabolites profiles and increased content of
some metabolites. Most transgenic lines
showed significant increases in capsule
alkaloid content compared with non-transgenic
controls the morphine alkaloid contents on a
dry weight basis were 14% greater than those
in control genotypes [48].

Since pure extracts of poppy-derived
alkaloids that are devoid of genetic material
has only industrial useable, it is expected that a
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transgenic source of these substances will be
accepted by consumers.

Molecular markers

Molecular markers, such as restriction
fragment length polymorphism (RFLP) and
random-amplified polymorphic DNA (RAPD)
appear to be good candidates for the
identification of plant species. This
methodology has become an important tool for
the confirmation of somatic hybrids and, more
recently, reported that RAPD markers can be
utilized for genetic analysis of
micropropagated plantlets regenerated from
somatic embryoids. This methodology has also
been used to determine the geographic
variation of plants [69].

It is difficult to determine P. bracteatum
compared with P. orientale L. and P. pseudo-
orientale Medw, in Oxitona section, based on
the morphological observation. Shoyama et al.
[69] demonstrated that RAPD analysis can be
used for a simple and rapid judgment of two
parental Papaver species in Oxitona section
(P. bracteatum and P. pseudo-orientale) and
the diagnosis of their F1 hybrids. On the other
hand, this method can also be used for the
judgment of illegally cultivated Papaver
species. Amplified restriction fragment length
polymorphic (AFLP) analysis, also have been
used to evaluate the genetic diversity of
breeding populations to provide information
on those lines with desired genetic
heterogeneity [68].

Biotransformation/expression in  other
genetically modified microorganism
Although many plant cell suspension
cultures fail to produce the compounds seen in
the plants from which they have been
established, these cells may be used in
biotransformation processes where exogenous
organic compounds are modified by living
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cells. Biotransformation studies in cell
suspension cultures have been carried out with
a view to: (i) producing new chemicals; (ii)
producing known chemicals more
economically; (iii) investigating the metabolic
fate of xenobiotics; and (iv) elucidating
metabolic pathways [70, 71].

Lenz and Zenk [20] described the
biosynthetic transformation of codeine and
morphine from the biological precursors:
codeinone and morphinone. The
biotransformation of codeinone to codeine
proved to be possible in the immobilized cells.
The biotransformation of thebaine via
codeinone and codeine to morphine also is
investigated ~ with  other  strains  of
P. somniferum cell cultures. Furuya et al. [72]
described the biotransformation of codeinone
to codeine by the cell suspension culture and
the cell-free system. This reduction required
NADH as a co-factor in the enzyme system. In
the immobilized cell system, however, this
reaction proceeded without NADH. Using a
column  Dbioreactor packed with the
immobilized living cells, they were also
investigated the effects of various conditions,
such as temperature and aeration, on the
conversion of codeinone to codeine and the
cell viability.

The biosynthetic pathway to morphine in
the oriental poppy P. somniferum is currently
being elucidated, and characterization will
benefit the production of morphine and its
semi-synthetic derivatives [73, 74]. The 17-
step biosynthesis of morphine in this plant has
been almost completely elucidated, with the
eventual goal being the biomimetic synthesis
of thebaine, codeine, and morphine. These
cDNAs were all functionally expressed in
insect cell culture (S. frugiperda St9 cells) or
in E. coli. However, there are still a number of
biosynthetic steps in the morphinan pathway
for which the enzymes have neither been
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identified nor cloned. Thus, the biosynthesis of
morphinan  alkaloids in a  microbial
heterologous host is not yet fully feasible. An
alternative approach is microbial
biotransformations of morphine into valuable
derivatives [75]. For example, a reusable
efficient  recombinant = morphine/codeine
biotransformation system was created using
Pseudomonas enzymes [76].

Systems Biology Approaches

Recent advances in plant genomics
research has generated knowledge leading to a
better understanding of the complex genetics
and biochemistry involved in biosynthesis of
these plant secondary metabolites. This
genomics research also concerned
identification and isolation of genes involved
in different steps of a number of metabolic
pathways. Progress has also been made in the
development of functional genomics resources
(EST databases and micro-arrays) in several
medicinal plant species, which offer new
opportunities for improvement of genotypes
using  perfect  markers or  genetic
transformation.

ESTs are generated by massive and
random sequencing of cDNAs generated from
the mRNA of the tissue of interest. ESTs are
typically short (normally only partially
represent the full-length clones) and are of
relatively low sequencing quality. ESTs offer a
quick method for cloning and examining a
large number of genes known to be expressed
in a particular cell population or tissue. Opium
poppy (P. somniferum), may be the prime
example for a non-model plant on the verge of
becoming a model. An extensive array of
genomics resources, including expressed
sequence tags (ESTs) and DNA microarrays,
for opium poppy plants and cell cultures has
been developed, together with proteomics,
allowing to the development of system biology
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approaches [77]. Decker et al. [78] and
Ounaroon et al. [79] used proteomic analyses
of P. somniferum latex (2D gel electrophoresis
(microsequencing) to create proteomic maps.
Beside enzymes from the primary metabolism,
a codeinone reductase was identified based on
homology to known isoforms [78]. In addition,
Papaver somniferum sequences coding for
reticuline 7- O -methyltransferase and
norcoclaurine 6- O -methyltransferase were
isolated based on peptide sequences and the
respective methyl transfer enzymes of alkaloid
biosynthesis were characterized [79].
Comparative macroarray analysis of opium
poppy and various morphine free Papaver
species was used to identify a P. somniferum
O-methyltransferase clone [80]. In this case,
P. somniferum seedlings were used to develop
a cDNA sequence library. Of the 849
sequenced elements, three were shown on a
macroarray, differentially expressed in
P. somniferum compared to non-morphine-
producing species. Whereas two of these
cDNAs showed no significant homology to
any known protein, one was found to encode a
protein identified as S-adenosyl-l-methionine
(R, S)-3'-hydroxy-N-methylcoclaurine 4’-OMT
(4'0OMT). Recently, an EST sequence database
was used to obtain the P. somniferum clone of
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understand intricate signaling and regulatory
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resolution map of the reprogramming primary
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that the response of cell cultures to elicitor
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In the future, potent genomics tools will be
combined with metabolic profiling to identify
key genes that serve for engineering secondary
product pathways.
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