سال 19، شماره 75 - ( 6-1399 )                   سال 19 شماره 75 صفحات 131-118 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nouri M. Preparation of nanoliposomes containing Hyssopus officinalis L. and Eryngium caeruleum M.Bieb extracts and investigate their antimicrobial and antimicrobial effects. J. Med. Plants 2020; 19 (75) :118-131
URL: http://jmp.ir/article-1-2548-fa.html
نوری مرجان. تهیه نانولیپوزوم‌های حاوی عصاره‌های زوفا و چوچاق و بررسی اثرات آنتی‌اکسیدانی و ضد‌میکروبی آنها. فصلنامه گياهان دارویی. 1399; 19 (75) :118-131

URL: http://jmp.ir/article-1-2548-fa.html


باشگاه پژوهشگران جوان ونخبگان،واحدرودهن،دانشگاه آزاداسلامی،رودهن،ایران ، marjan.nouri@ut.ac.ir
چکیده:   (2739 مشاهده)
مقدمه: گرایش عمومی جامعه به استفاده از عصاره‌های طبیعی به عنوان ترکیبات ضد‌میکروب، پاداکسنده و نگهدارنده در طی سال‌های اخیر افزایش یافته است. هدف: هدف این پژوهش بهبود خصوصیات کاربردی دو گیاه زوفا و چوچاق است که با مقایسه افزایش پایداری خصوصیات ضد‌میکروبی و ضد‌اکسیدانی نانولیپوزوم‌های حاوی عصاره‌های آنها با ترکیبات شاهد (عصاره‌های آزاد) محقق می‎شود. روش بررسی: عصاره‌گیری آبی پس از شناسایی هر دو گیاه انجام پذیرفت و نانولیپوزوم‌های چوچاق، زوفا و ترکیب آنها بر اساس روش آب پوشانی لایه نازک تولید شد. آزمون‌های بازده درون پوشانی، ظرفیت بارگذاری، اندازه ذرات با دستگاه پراکندگی نور پویا، پتانسل زتا با زتا سایزر، فعالیت آنتی اکسیدانی با روش رادیکال مقاوم DPPH و خاصیت ضدمیکروبی به روش چاهک تعیین شد. نتایج‌: نانولیپوزوم‌های حاوی عصاره چوچاق به طور معنی‌داری ظرفیت بارگذاری (5/17 درصد) و بازده درون‌پوشانی (5/23 درصد) بیشتری داشتند. میانگین اندازه ذات نانولیپوزوم عصاره چوچاق به طور محسوسی نسبت به سایر نمونه‌ها بالاتر (21/54 نانومتر) بود. فعالیت آنتی اکسیدانی عصاره‌ها بعد از کپسولاسیون در نانولیپوزوم افزایش یافت و EC50 عصاره چوچاق نانولیپوزومی به 14/27 (میکروگرم بر میلی‌لیتر) کاهش یافت. در میان باکتری‌ها استرپتوکوکوس اینیه (43/19 میلی‌متر) و استافیلوکوکوس اورئوس (38/18 میلی‌متر) به ترتیب در حضور نانولیپوزوم‌های حاوی عصاره چوچاق و زوفا هاله‌ی عدم رشد بیشتری در مقایسه با سایر باکتری‌ها از خود نشان دادند. نتیجه‌گیری: نانولیپوزم‌های حاوی عصاره‌ی چوچاق و زوفا می‌تواند به بهترین شکل خصوصیات کاربردی این گیاهان دارویی را افزایش دهد و جهت کاربرد صنعتی توصیه می‌شود.
متن کامل [PDF 730 kb]   (1425 دریافت)    
نوع مطالعه: پژوهشی |
دریافت: 1398/3/25 | پذیرش: 1398/8/21 | انتشار: 1399/6/16

فهرست منابع
1. Santamaria-Echart A, Fernandes I, Barreiro F, Retegi A, Arbelaiz A, Corcuera MA and Eceiza A. Development of waterborne polyurethane-ureas added with plant extracts: Study of different incorporation routes and their influence on particle size, thermal, mechanical and antibacterial properties. Prog. Org. Coat. 2018; 117: 76-90. [DOI:10.1016/j.porgcoat.2018.01.006]
2. Gómez-Estaca J, López AL, López-Caballero ME, Gómez-Guillén MC and Montero P. Biodegradable gelatine-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010; 27: 889-96. [DOI:10.1016/j.fm.2010.05.012]
3. Hajdari A, Giorgi A, Beretta G, Gelmini F, Buratti S, Benedetti S, Merkouri A, Mala X, Kabashi S, Pentimalli D, Pulaj B and Mustafa B. Phytochemical and sensorial characterization of Hyssopus officinalis subsp. aristatus (godr.) Nyman (Lamiaceae) by GC-MS, HPLC-UV-DAD, spectrophotometric assays and e-nose with aid of chemometric techniques. Eur. Food Res. Technol. 2018; 44: 1-15. [DOI:10.1007/s00217-018-3046-z]
4. Dehghanzadeh N, Ketabchi S and Alizadeh A. Essential Oil composition and antibacterial activity of Hyssop Officinalis L. grown in Iran. Asian J. Exp. Biol. Sci. 2012; 3(4): 767-71.
5. Fathiazad F, Mazandarani M and Hamedeyazdan S. Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. from Iran. Adv Pharm Bull. 2011; 1(2): 63-7.
6. Glamoclija JM, Sokovic MD, Vukojevic JB, Milenkovic IM, Brkic DD and Griensven LJLD. Antifungal activity of essential oil of Hyssopus officinalis L. against mycopathogen Mycogone perniciosa (Mang). Zb. Matitse Srp. Prir. Nauke. 2005; 109: 123-28. [DOI:10.2298/ZMSPN0519123G]
7. Vlase L, Benedec D, Hanganu D, Damian G, Csillag I, Sevastre B and et al. Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014; 19(5): 5490-507. [DOI:10.3390/molecules19055490]
8. Nabavi SM, Nabavi SF, Ebrahimzadeh MA and Eslami B. In Vitro Antioxidant Activity of Pyrus Boissieriana, Diospyros Lotus, Eryngium Caucasicum and Froriepia Subpinnata. JRUMS. 2009; 8(2): 139-50.
9. Vukic MD, Vukovic NL, Djelic GT, Obradovic AM, Kacaniova M, Markovic S, Popović S and Dejan B. Phytochemical analysis, antioxidant, antibacterial and cytotoxic activity of different plant organs of Eryngium serbicum L. Ind. Crop. Prod. 2018; 115(3): 88-97. [DOI:10.1016/j.indcrop.2018.02.031]
10. Flamini G, Tebano M and Cion PL. Composition of the essential oils from leafy parts of the shoots, flowers and fruits of Eryngium amethystinum from Amiata Mount (Tuscany, Italy). Food Chem. 2007; 107(2): 671-4. [DOI:10.1016/j.foodchem.2007.08.064]
11. Salmanian S, Sadeghi MA, Jamson M and Tabatabaee AB. Identification and quantification of phenolic acids, radical scavenging activity and ferric reducing power of Eryngium caucasicum Trautv. ethanolic and methanolic extracts. JRIFST. 2013; 2(2): 193-204.
12. Hashemabadi D and Kaviani B. Seasonal and geographical variations in the essential oils of Eryngium caucasicum Trautv growing in Iran. AEJAES. 2010; 8(2): 212-5.
13. Luo Y, Zhang B, Cheng WH and Wang Q. Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydr. Polym. 2011; 82(3): 942-51. [DOI:10.1016/j.carbpol.2010.06.029]
14. Desai. KGH and Park HJ. Recent developments in microencapsulation of food ingredients. Drying Technol. 2005; 23: 1361-94. [DOI:10.1081/DRT-200063478]
15. Molan A, Flanagan J, Wei W and Moughan P. Selenium-containing green tea has higher antioxidant and prebiotic activities than regular green tea. Food Chem. 2009; 114: 829-35. [DOI:10.1016/j.foodchem.2008.10.028]
16. Xia S and Xu S. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res. Int. 2005; 38(3): 289-96. [DOI:10.1016/j.foodres.2004.04.010]
17. Woranuch S and Yoksan R. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydra Polym. 2012; 96(2): 578-85. [DOI:10.1016/j.carbpol.2012.08.117]
18. Moghimi R, Ghaderi L, Rafati H, Aliahmadi A and McClements DJ. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016; 194: 410-5. [DOI:10.1016/j.foodchem.2015.07.139]
19. Burits M and Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 2000; 14(5): 323-8. https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q [DOI:10.1002/1099-1573(200008)14:53.0.CO;2-Q]
20. NCCLS Performance standards for antimicrobial susceptibility testing. 3th International Supplement: 1999, M 100-S 109.
21. Gaonkar AG, Vasisht N, Khare AR and Sobel R. Microencapsulation in the Food Industry A Practical Implementation Guide. Academic Press is an Imprint of Elsevier. 2014, pp: 187-98.
22. Fan M, Xu S, Xia S and Zhang X. Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. Eur. Food Res. Technol. 2008; 227: 167-74. [DOI:10.1007/s00217-007-0706-9]
23. Wisuitiprot W, Somsiri A, Ingkaninan K and Waranuch N. A novel technique for chitosan microparticle preparation using a water/silicone emulsion: Green tea model. Int. J. Cosmet. Sci. 2011; 33: 351-8. [DOI:10.1111/j.1468-2494.2010.00635.x]
24. Zou LQ, Liu W, Liu W, Liang R, Li T and Liu C. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J. Agric Food Chem. 2014; 62: 934-41. [DOI:10.1021/jf402886s]
25. Gulseren I and Corredig M. Storage stability and physical characteristics of tea-polyphenolbearing nanoliposomes prepared with milk fat globule membrane phospholipids. J. Agric. Food Chem. 2013; 61: 3242-51. [DOI:10.1021/jf3045439]
26. Heurtault B, Saulnier P, Pech B, Proust JE and Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003; 24: 4283-300. [DOI:10.1016/S0142-9612(03)00331-4]
27. Luximon-Ramma A, Bahorun T, Soobrattee MA and Aruoma OI. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J. Agric. Food Chem. 2002; 50: 5042-7. [DOI:10.1021/jf0201172]
28. Akbrian A, Rahimmalek M, Sabzalian MR and Saeidi G. Assessment of Phytochemical, Morphological and Antioxidant Variation of Bilehar (Dorema aucheri) Populations Cultivated in Different Environmental Conditions. J. Med. Plants. 2017; 16(2): 120-35.
29. Spigno G, Donsì F, Amendola D, Sessa M, Ferrari G and De Faveri DM. Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. J. Food Eng. 2013; 114: 207-14. [DOI:10.1016/j.jfoodeng.2012.08.014]
30. González-Paredes A, Clarés-Naveros B, Ruiz- Martínez MA, Durbán-Fornieles, JJ, Ramos-Cormenzana A and Monteoliva-Sánchez M. Delivery systems for natural antioxidant compounds: Archaeosomes and archaeosomal hydrogels characterization and release study. Int. J. Pharm. 2011; 421(2): 321-31. [DOI:10.1016/j.ijpharm.2011.09.042]
31. Yang T, Koo M. Hypocholesterolemic effects of Chinese tea. Pharmacol. Res. 1997; 35: 505-12. [DOI:10.1006/phrs.1997.0176]
32. Amin M, Nikoopour and Fazeli MR. A survey of antibacterial effects of oliveria decumbens and Nepeta binaludensis essential oils on staphylococcus aureus and escherichia coli in doogh. J. Med. Plants. 2018; 18(1): 134-43.
33. Zakerin AR, Ahmadi E, Fasihi Ramandi M, Abdollahi S, Molazadeh AR and Jafari S. The Effects of Ecologic Condition on Antimicrobial Activity of Endemic Herbal Extracts in Fars Province. JFUMS. 2015; 5(1): 111-9.
34. Srivastava AW and Shym S. Citrus: Climate and soil. Edition 1st. Delhy, India: International Book Distributing Company. 2002, p: 151-65.
35. Hallaj-Nezhadi S and Hassan M. Nanoliposome-based antibacterial drug delivery. Drug Deliv. 2015; 22(5): 581-9. [DOI:10.3109/10717544.2013.863409]
36. Liolios C, Gortzi O, Lalas S, Tsaknis J and Chinou I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 2009; 112: 77-83. [DOI:10.1016/j.foodchem.2008.05.060]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به فصلنامه علمی پژوهشی گیاهان دارویی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb