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Abstract

Background: Although borage (Borago officinalis L.) is a valuable medicinal plant, no
information is available on the responses of this plant to salinity. For this reason, it is
necessary to determine responses of this plant to salinity.

Objective: Since germination and early growth stage is one of the most critical phases of
plant life under salinity condition; this experiment was conducted to determine some
responses of borage to salinity at the seedling stage.

Methods: This experiment was laid out in a completely randomized design with three
replications and four salinity treatments, including distilled water (EC=0.0dS m™) and
three saline water conditions with EC of 5.0, 10.0 and 15.0 dSm™.

Results: With increasing EC, the content of free proline, soluble carbohydrates and
proteins were increased. Moreover, the activities of superoxide dismutase (SOD),
peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO) enzymes were
significantly increased. Although seedlings dry weight and emergence percentage were
declined with increasing EC, the seedlings had markedly growth/survival under salinity
conditions.

Conclusion: The survival and little reduction in emergence under salinity conditions
(12.5%) indicated that borage was a salt tolerant species at the early growth stage. This
tolerant is certainly due to the enhancement of antioxidant enzymes activities and
compatible solutes content.

Keywords: Antioxidant enzymes, Borago officinalis L., Osmotic adjustment, Salinity,
Seedling stage.

Abbreviates: Catalase (CAT), Dry Weight (DW), Fresh Weight (FW), Peroxidase (POD),
Polyphenol Oxidase (PPO), Reactive Oxygen Species (ROS), Superoxide Dismutase (SOD),
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Introduction

Salinity is considered as a major
environmental stress that can limit plant
growth. It is expected that salinization of
arable lands will result in 30 percent land loss
in next 25 years and 50 percent by the middle
of the 21 st century [1]. On the other hand,
rapid growth of human population has led to
rising demand for food and usage of saline
soils or water for crop production. Successful
plant production under salt stress conditions
requires an adequate understanding of how
salts affect soil characteristics and plant
performance [2].

The ability of plants to grow in high salt
concentrations is known as salt tolerance [3].
Evidence collected from various species
suggests that plant salinity tolerance varies
depending on many factors such as
environmental conditions, agronomical
practices, irrigation management, soil fertility,
cultivars, and growth stage. The early growth
stages is one of the most critical phases of
plant life which is greatly influenced by
salinity [4, 5]. For this reason, many plants are
extremely sensitive to salinity during the early
growth stages [6].

It has been reported that the content of
reactive oxygen species (ROS) was elevated
with increasing salinity, due to the imbalance
in the production and destruction of ROS [7].
ROS attack the most sensitive biological
macromolecules and membranes to impair
their functions [8]. Plants employ biochemical
and molecular mechanisms to cope with salt
stress such as induction of antioxidative
enzymes and synthesis of compatible solutes
[9].

One mechanism of ROS detoxification is
activation of enzymatic antioxidants (SOD,
CAT, POD, etc.) which exist in all the plants
[8, 10]. Hence, a strong correlation between
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the antioxidant defense system and salt
tolerance in many plants are reported [7].

Furthermore, a major effect of salinity
stress is the loss of intracellular water. Plants
accumulate many metabolites as “compatible
solutes” which prevent the water loss from the
cell and protect the cellular proteins [11]. The
accumulation of these osmolytes, facilitate the
osmotic adjustment [12]. This phenomenon is
an effective mechanism for salinity tolerance
in many plants (Ashraf and Orooj, 2006).
Carbohydrates and proline are two major
compatible solutes [9].

Borage (Borago officinalis L.) is an annual
herbaceous plant which is well suited for
cultivation in certain countries of the world
including Iran [14]. Recently, borage has been
the subject of increasing agricultural interest
because researches showed that seeds and
other parts of this plant have valuable fatty
acids, particularly gamma linolenic acids. This
compound has potential to  prevent
cardiovascular disease, cancer and infectious
diseases. So it was subjected that borage could
be a ‘power food’ of the future [15, 16].

Although borage is one of valuable
medicinal plants and its cultivation is
continuously being extended in the world, no
information is available on the responses of
this plant to salinity. Since early growth stages
is one of the most critical phases of plant life
[4, 5], the present study was carried out to
explore the effects of salinity on borage at
seedling stage.

Materials and Methods

This study was conducted in the Plant
Science Laboratory at Tarbiat Modares
University, Tehran, Iran from September to
November 2006. Seeds of Borago officinalis
L. were obtained from the Institute of
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Medicinal Plants Research of Iranian
Academic Centre for Education, Culture and
Research (ACECR), Tehran, Iran.

The experiment was laid out in a
completely randomized design with four salt
treatments and three replicates. The treatments
were distilled water (control) and three saline
water treatments with electrical conductivities
of 5.0, 10.0 and 15.0 dS m’. The treatment
solutions were made with saline water and
distilled water depending on target salinity.
Natural saline water was obtained from Hoz-e-
Soltan Lake in Qom, Iran. The major ions of
saline water were:128 g/l Na', 218.7 g/l CI',
1.23 g/l K7, 19.5 g/l Mg*", 0.086 g/l Ca*" and
48.8 g/ SO4”.

The seeds were selected for uniformity in
size, shape and color. The seeds surfaces were
sterilized with 0.5% sodium hypochlorite for 1
minute and rinsed thoroughly with distilled
water. Each replicate contained 1.0 L plastic
container in which 50 seeds were sown with
dry washed sand. Then, one concentration of
the treatment solutions was added to the
medium up to the soil field capacity (sufficient
water to initiate drainage).

The salinity levels were kept constant
throughout the experiment period by using
containers sealed with plastic bags to avoid
evapotranspiration. =~ The  growth  room
conditions were maintained at 24.5 + 0.5 °C,
relative humidity of 35 £ 5% and photoperiod
of 12 h.

Fifteen -day-old seedlings were used for
evaluation fresh and dry weight, soluble
protein, free proline, soluble carbohydrates
and antioxidant enzyme activities. The
emergence of seedlings was recorded at the
end of experiment and the emerged percentage
was calculated. Then, the seedlings were
harvested/washed with distilled water and the
surface moistures were wiped out. Seedling
growth (fresh and dry weight) was determined
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using ten seedlings from each salinity levels in
triplicate. The seedlings were oven dried at
70 °C for 72h (until there was no decrease in
weight). Water content (WC), as the
percentage of fresh weight, was calculated
using the following formula (Misra and
Dwivedi, 2004):

WC (%) =[(FW - DW) / FW] x 100

Free proline content was extracted from
the leaves and roots using 3% sulphosalicylic
acid and L-proline (Sigma) as a standard [17].
Water-soluble carbohydrates concentration in
the leaves and roots was measured by phenol-
sulfuric acid [18]. Protein content was
determined with method of Bradford using
bovine serum albumin as standard for the
calibration curve [19].

A sample of seedling tissue (0.5 g) was
homogenized in 5ml of 50mM Tris-HCI buffer
(pH 7.5). The homogenate was filtered and
then centrifuged at 4 °C for 20 min at 15000xg
[7]. The obtained supernatant was used for the
measurement of enzyme activity.

Total superoxide dismutase (SOD, EC
1.15.1.1) activity was determined by
measuring its ability to inhibit the
photochemical  reduction  of  nitroblue
tetrazolium chloride (NBT), as described by
Beauchamp and Fridovich (1971).

Catalase (CAT, EC 1.11.1.6) activity was
assayed in the extract by measuring the level
of decrease in absorption of 240nm (Kar and
Mishra, 1976) in the reaction mixture
containing 30uml of the enzyme extract,
50mM of Tris-buffer (pH 7.0) and 5 mM of
H,0..

Peroxidase (POX, EC 1.11.1.7) activity
was determined as described by Kar and
Mishra (1976). The reaction mixture contained
100mM of Tris-buffer (pH 7.0), SmM of H,0,,
and 10mM of pyrogallol. Some 12 uml of the
extract enzyme was added to the mixture to
initiate the reaction, measured
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spectrophotometrically at 425 nm.

Polyphenol oxidase (PPO, ECI1.14.18.1)
activity was assayed using the method of Kar
and Mishra (1976). The reaction mixture
contained 100mM of Tris—buffer (pH 7.6); and
10 mM of pyrogallol and the enzyme solution
was incubated at 25 °C for 5 minutes. The
absorbance of the purpurogallin form was
taken at 420 nm.

One-way analysis of variance was applied
to evaluate the salt-effect. The mean
differences were compared by “Duncan’s
multiple range test” at p< 0.05.

Results and Discussion

Seedlings emergence percentage of borage
was significantly different (p<0.05) among the
various treatments (Table 1). Although, the
salinity  reduced seedlings emergence
percentages, the reduction in seedling
emergence was quite small (12.5%). In
addition, with increasing EC from 5 to 15 dS
m™, no more reduction in seedling emergence
was observed (Fig. 1A).

At seedling emergence stage, salt tolerance is
usually determined based on the survival rates [3].
The results indicated that seedlings emergence was
about 80 percent in non-saline treatment, declined
to about 69% when EC increased up to 15 dS m™
(Fig.1A). Also, ECt (the solution electrical
conductivity at which germination starts to
decrease) for borage was 5 dS m™ which
amount of this reduction (12.5%) was little.
Several studies have shown different results
from other plants. Martin Aleméan et al. (1999)
reported EC; value of 4.9 dS m™ for Phoenix
canarien and 1.6 dS m™" for Sabal palmetto
[22].

Additionally, the electrical conductivity at
which germination declines by 50 percent
(ECso) was reported to be 21.2 dS m™ for
sorghum [23], 4.3 for salt-tolerant barley [24]
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and 10.4 dS m” for Salvadora persica [25]. In
this study, the decline in the seed germination
was 12.5% at EC of 15 dS m™' which could be
suggested that borage seed had high potential
of germination under saline conditions. Also,
according to salt tolerance classification
system of the Mass and Hoffman (1977), it can
be suggest that borage had a salt tolerance
potential at the seedlings emergence stage.

The fresh weight (FW) was significantly
(p<0.01) improved at EC of 5 and 10 dS m™,
but drastically reduced with increasing salinity
i.e EC of 15 dS m™. However, the difference
in terms of the seedlings FW was not
significant at EC of 0 and 15 dS m™ (Fig. 1B).
Therefore, after an initial increase in the FW
with increasing salinity, it declined at EC of 15
dS m™. With increasing salinity, dry weight
(DW) of seedlings was significantly reduced.
Of course, the growth performance of the
seedlings was satisfactory (Fig. 1C).

Water content (WC) of the seedlings
increased up to EC of 10 dS m™ and then
declined with further increment of salinity.
The highest percentage of WC was observed at
EC of 10 dS m™', whereas the lowest value was
observed at EC of 0 dS m™ (Fig. 1D).

Trends in WC of the seedling were similar
to those of their FW (Fig. 1B and D). In other
words, WC and FW increased with increasing
salinity up to EC of 10 dS m" and then
decreased at EC of 15 dS m™. Our findings
showed that increasing salinity caused an
increment in the soluble osmolytes (Fig. 1E
and F) and consequently caused a significant
increase in FW and WC of the seedlings at EC
of 5 and 10 dS m"' (Fig. 1D). This
phenomenon is an effective mechanism for
salinity tolerance in many plants to prevent the
water loss from the cell and protect the cellular
proteins [11, 12, 13].

However, in excess of salinity (EC of 15
dS m™), FW and WC of the seedlings were
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declined probably due to a reduction of ability
to adjust osmotically, or the high demand of
energy requirements for such adjustment [26].

Although, the seedlings DW significantly
decreased (p<0.01) with increasing salinity
(Fig.1 C), it was adequate well up to EC of 15
dS m™. This reduction in DW is probably due
to the usage of carbohydrate compounds to
synthesize specific osmolytes such as proline
[27]. In addition, other factors such as the
toxic effect of salt, unbalanced nutrient uptake
and nutrient deficiencies may also play a role
in reduction of dry weight [28]. It was
previously reported that salt stress also results
in a significant decrease in DW of leaves,
stem, and roots in plants [29, 30].

Increasing salinity of the growth medium
had a significant increasing effect (p<<0.01) on
free proline content of shoots and roots. It was
maximal at the highest salinity level, i.e. EC of
15 dS m™". The free proline content was higher
in the roots than the shoots at different salinity
levels (Fig. 1E).

The soluble carbohydrates content of the
roots and shoots were significantly increased
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(p<0.01) with increasing salinity. Unlike to
proline, the content of soluble carbohydrates in
the shoots was higher than the roots at
different salinity treatments (Fig. 1F).

The soluble protein content of the
seedlings was significantly (p<0.01) increased
with the enhancement of salinity levels (Table
1 and Fig. 2A). The protein content was 31.32
mg g{1 (FW) at salinity level of 0 dS m™ of but
it increased significantly up to 53.53 mg g '
(FW) at the EC of 15 dS m’".

To cope with salt stress, plants employ
different biochemical processes. One of the
vital processes is production of some
metabolites which called compatible solutes or
osmolytes. The accumulation of these
osmolytes facilitates osmotic adjustment [11,
12, 13].

Proline is a main osmolyte which
accumulate under saline conditions in many
plants including some medicinal plants such as
ajwain [13], anise and coriander [31]. Proline
can be utilized both as a carbon and/or
nitrogen source for rapid recovery from the
salinity stress [32]. Also, proline have a dual

Table 1: Analysis of variance for different parameters

Source of df

Mean squares

variation
Seedling Emergence Fw DW wC Shoot proline
Treatments 3 72.89% 3087.15%** 12.37%** 13.281%** 0.323%**
Error 8 16.00 67.37 0.136 0.227 0.002
Root proline Shoot Root Soluble SOD activity
carbohydrates carbohydrates protein
Treatments 3 3.90 *** 24599.82%** 3525.43%%* 374.04%** 2139.44%%**
Error 8 0.011 84.88 65.20 8.04 51.04
POX activity CAT activity PPO activity
Treatments 3 33789.42%** 731187.97%** 27.354%%*
Error 8 47.18 2477.65 0.468

*#%: significant at 0.001.

*: significant at 0.05

<4
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Fig. 1- Effect of salinity (EC) on seedling emergence (A), fresh weight production (B), dry weight production
(C), water content (D), free proline content (E) and soluble carbohydrate content (F) in B. officinalis seedlings.
Bars with different letters are significantly different at P<0.05. Each Bar represents a mean of three replicates +
standard error (SE).

role in improving salt stress tolerance as they
are able to act in a similar way to the
peroxidase enzymes and scavenge reactive
oxygen species [33].

The results indicated that the proline
concentration was much greater in the root
than in the shoot tissues which cause to
decrease in water potential in the root and
increase in water uptake. Therefore, the
enhancement of proline content in root is a
valuable strategy which can be a reason of the
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seedlings survival at saline condition. In other
words, this mechanism could cause to
increasing salt tolerant potential of borage at
early growth stage.

In saline conditions, carbohydrates are
other major compatible solutes [9] which
prevent the water loss from the cell and protect
the cellular proteins [11]. The carbohydrates
accumulation  facilitates  the osmotic
adjustment [12] and has an effective role in
salinity tolerance in borage seedlings under
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saline conditions. Also, the previous study
indicated that accumulation of carbohydrates
provides the carbon skeleton to synthesize
proline that is used for adaptive and/or
defensive responses against stress including
salinity [27].

The protein accumulation in borage
seedlings may be part of the protection
mechanism against salinity (Fig. 2A). In
addition, proteins accumulation under saline
conditions may provide a storage form of
nitrogen that is re-utilized when the stress is
over and may play a role in osmotic
adjustment [34]. It was previously reported
that a higher soluble proteins content has been
observed in salt tolerant than in salt sensitive
cultivars of barley [35].

The salinity caused significant (p<0.01)
increase in the antioxidant enzymes activities
(Table 1 and Fig.2). Activity of SOD was
significantly increased with increasing salinity
up to EC of 5 dS m™, but it remained constant
with further increasing salinity (Fig. 2B). The
activities of POD, CAT and PPO in the
seedlings  were  significantly  (p<0.01)
enhanced with increasing salinity. The highest
activity of these enzymes activities were
observed at the maximum level of salinity i.e.
EC of 15dS m™ (Fig. 2C, 2D and E).

An excessive ROS production occurs in
response to stress conditions such as salt stress
[11]. Under such condition, ROS production
overcomes the antioxidant system capacity,
and thus oxidative stress occurs. Afterwards,
the lipid metabolism of plant is interrupted as a
result of oxidative damage to membrane lipids
by ROS [7]. This could lead to the damage of
the components of electron transfer chain in
mitochondrial [36].

SOD converts superoxide radicals into
hydrogen peroxide and oxygen. Hydrogen
peroxide is eliminated by action of CAT and
different classes of peroxidases [37].
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Therefore, higher SOD, POD, CAT and PPO
activities in borage seedling under salinity
stress (Fig. 2) probably results from an
increased capacity for oxygen radical
scavenging and maintenance of cellular
membrane. These enzymes are considered to
be the main protective enzymes that play a key
role in the removal of ROS [8, 10].

Also, increase in SOD, CAT, POD and

PPO activities in different tissues under
increasing salinity have also been reported in a
number of plants [38]. In addition, many
researchers have reported that the antioxidant
enzymes have relatively higher activities in
tolerant cultivars than in the sensitive ones,
suggesting that higher antioxidant enzymes
activities have a role in imparting the tolerance
to these cultivars against environmental
hazards such as salinity [39].
On the other hand, a strong correlation
between the antioxidant defense system and
salt tolerance in many plants is reported [7].
Thus, increasing the antioxidant enzymes
activities had an important role in salt
tolerance potential of borage seedlings.

Although antioxidant activity has been
reported in the extract of borage seeds
(Wettasinghe and Shahidi, 1999), however, the
present research is the first report on
antioxidant activity of SOD, CAT, POD and
PPO enzymes in borage seedling.

Conclusion

This study indicated that borage had a salt
tolerance potential up to EC of 15 dS m™ at the
early growth stage. Also, this salt tolerant
potential was due to increase in the antioxidant
enzymes activities and the compatible solutes
content. However, this study is only a step
towards evaluation of salt tolerance and further
investigations are needed to determining of
phytochemical and production potential of

borage at saline conditions.
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