year 21, Issue 82 (5-2022)                   J. Med. Plants 2022, 21(82): 66-79 | Back to browse issues page


XML Persian Abstract Print


1- MSc of Agricultural Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
2- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran , moshtaghi@um.ac.ir
3- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
Abstract:   (1767 Views)
Background: Datura species produce a wide range of tropane alkaloids with medicinal values. D. innoxia is a species of the Datura genus which is poisonous and has an unpleasant odor due to the presence of tropane alkaloids. Objective: The study aimed to induction of polyploidy by colchicine treatment on downy thorn-apple and the effect of it on appearance and hyoscyamine content. Methods: In order to induce tetraploidy in downy thorn-apple, a factorial experiment was carried out with two factors: colchicine concentrations (0.05, 0.1, and 0.2 %) and exposure time (48 and 72 h) with 3 plants for each treatment with using a cotton ball included colchicine on shoot tip. Morphological changes were observed and the plants were analyzed by flow cytometry in near to the flowering time. Results: The results showed that the concentration and exposure time of colchicine, and their interaction affected the percentage of tetraploidy. The maximum percent of tetraploidy was observed in concentration of 0.2 % and 72 h. On the other hand, the application of different concentrations of colchicine and exposure time didn’t have a significant effect on plant survival. The number of stomatal guard cells were decreased but no significant differences were observed in the content of total chlorophyll and carotenoids. Also, the hyoscyamine content in tetraploid plants was decreased to half in comparison to diploid ones. Conclusion: In general, induction of tetraploidy in this plant could change some phenotypic traits but has a negative effect on hyoscyamine content.
Full-Text [PDF 914 kb]   (712 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2022/03/16 | Accepted: 2022/05/26 | Published: 2022/05/31

References
1. Trease GE, and Evans WC. Pharmacognosy. 1989; 11th Edition, Bailliere Tindall, London.
2. Omid Beigi, R. Production and Processing of Medicinal Plants. 2005; Quds Razavi Publications. 438 pp (In Persian).
3. Thao NTP, Ureshino K, Miyajima I, Ozaki Y and Okubo H. Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. PCTOC. 2003; 72: 19-25. [DOI:10.1023/A:1021292928295]
4. Berkov S, and Philipov S. Investigation of tropane alkaloids in Datura stramonium. Z. Natur. Forsch. 2002; 57C: 559-561. [DOI:10.1515/znc-2002-5-627]
5. Dehghan E, and Shahriari Ahmadi F. Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). PCTOC. 2012; 110:35-44. [DOI:10.1007/s11240-012-0127-8]
6. Gantait S, Mukherjee E. Induced autopolyploidy-a promising approach for enhanced biosynthesis of plant Specialized metabolites: an insight. J. Genet. Eng. Biotechnol. 2021;19, 4. [DOI:10.1186/s43141-020-00109-8]
7. Sujipuli K, Inthima P, Yimtragool N, Warnnissorn N, Warnnissorn P, Prasarnpun S. In vitro colchicine-induced polyploids from different explant segments of Bacopa monnieri. Science Asia. 2021; 47: 1-10. [DOI:10.2306/scienceasia1513-1874.2021.003]
8. Mechler E, and Kohlenbach HW. Alkaloid content in leaves of diploid and haploid Datura species. Planta. Med. 1978; 33: 350-355. [DOI:10.1055/s-0028-1097390]
9. Lichtenthaler HK. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Meth. Enzymol. 1987; 148: 350-382. [DOI:10.1016/0076-6879(87)48036-1]
10. Vanduren M, Dolezel J and Afza R. Induction and verification of autotetraploids in diploid banana (Musa acuminata) by in vitro techniques. Euphytica. 1996; 88: 25-34. [DOI:10.1007/BF00029262]
11. Lavania UC. Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. Plant Genet. Resour. 2005; 3: 170-177. [DOI:10.1079/PGR200576]
12. Manzoor A, Ahmad T, Bashir MA, Hafiz IA and Silvestri C. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants (Basel). 2019; 8(7): 194. [DOI:10.3390/plants8070194]
13. Yavari S. Investigation of the effect of colchicine on morphological, physiological and active properties of nightshade medicinal plant, MSc thesis. 2007, 140 pp. Trabiat Modares University (In Persian).
14. GU XF, Yang AF, Meng H, and Zhang JR. In vitro induction of tetraploid plants from diploid Zizyphus jujube Mill. cv. Zhanhua. Plant Cell Rep. 2005; 24: 671-676. [DOI:10.1007/s00299-005-0017-1]
15. Gao SL, Chen BJ, and Zhu DN. In vitro production and identification of autotetraploids of Scutellaria baicalensis. PCTOC. 2002; 70(3): 289-293. [DOI:10.1023/A:1016577002039]
16. Malekzade Shafaroudi S, Ghani A, Habibi M and Amiri A. Investigation of the possibility of tetraploid induction in basil using colchicine. J. Horticultural Sci. 2012; 25(4): 461-469. (In Persian).
17. Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Sci. 1994; 264: 421-3. [DOI:10.1126/science.264.5157.421]
18. Salma U, Kundu S, Hazra AK, Ali MN, Mandal N. Augmentation of wedelolactone through in vitro tetraploid induction in Eclipta alba (L.) Hassk. PCTOC. 2018; 133: 289-298. [DOI:10.1007/s11240-018-1381-1]
19. Khalili Boroujeni M. Laboratory production of safflower polyploid seedlings and study of pigment content in roots and calluses. MSc thesis. 2001. Shahi Beheshti University. (In Persian).
20. Talei D, Khayam Nekouei M, Mardi M, Kadkhodaei S. Improving productivity of steviol glycosides in Stevia rebaudiana via induced polyploidy. J. Crop Science and Biotechnology 2020; 23, 301-309. [DOI:10.1007/s12892-020-00038-5]
21. Joseph MC, and Randall DD. Photosynthesis in polyploidy tall fescue. Plant Physiol. 1981; 68: 894-898. [DOI:10.1104/pp.68.4.894]
22. Mathura S, Fossey A, and Beck S. Comparative study of chlorophyll content in diploid and tetraploid black wattle (Acacia mearnsii). Forestry 2006; 79(4): 381-388. [DOI:10.1093/forestry/cpl023]
23. Timco MP, Vasconcelos AC, and Fairbrother, DE. Euploidy in ricinus. euploidy and gene dosage effects on cellular proteins. Biochemcal Genetica. 1981; 18: 171-183. [DOI:10.1007/BF00504367]
24. Omidbaigi R, Mirzaee M, Hassani ME and Sedghi Moghadam M. Induction and identification of polyploidy in basil (Ocimum basilicum L.) medicinal plant by colchicine treatment. IJPP. 2010; 4(2): 87-98.
25. Andersson SC. Carotenoids, tocochromanols and chlorophylls in sea buckthorn berries (Hippophae rhamnoides) and rose hips (Rosa sp.). 2009. PhD Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden.
26. Saharkhiz MJ. Effect of climatic factors and ploidy level on morphological and physiological characteristics and ornamental herb chamomile Great. PhD thesis, 2006; Tarbiat Modarres University, Tehran. 173 pp (In Persian).
27. Shmeit YH, Fernandez E, Novy P, Kloucek P, Orosz M, Kokoska L. Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Sci. Hortic. 2020; 263: 109095. [DOI:10.1016/j.scienta.2019.109095]
28. Kaensaksiri T, Soontornchainaksaeng P, Soonthornchareonnon N, Prathanturarug S. In vitro induction of polyploidy in Centella asiatica (L.) urban. PCTOC. 2011; 107: 187. [DOI:10.1007/s11240-011-9969-8]
29. Caruso I, Dal Piaz F, Malafronte N, De Tommasi N, Aversano R, Zottele CW, Scarano MT, Carputo D. Impact of ploidy change on Specialized metabolites and photochemical efficiency in Solanum bulbocastanum. Nat. Prod. Commun. 2013; 8: 1934578X1300801011. [DOI:10.1177/1934578X1300801011]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.