year 21, Issue 82 (5-2022)                   J. Med. Plants 2022, 21(82): 43-55 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moridi Farimani M, Ahmadi E, Rezadoost H. Optimization of inulin extraction from Inula helenium L. using response surface methodology followed by its MALDI-TOF and TLC-FLD based characterization. J. Med. Plants 2022; 21 (82) :43-55
URL: http://jmp.ir/article-1-3303-en.html
1- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
2- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran , H_Rezadoost@sbu.ac.ir
Abstract:   (2038 Views)
Background: Inulin, a prebiotic, is a mixture of linear chains β-2,1 fructans with a degree of polymerization (DP) of 2 to 60. Different DPs have various applications in the cosmetics, pharmaceutical, and food industries. Objective: This study aims to find the best method for DP determination. Methods: RSM was applied to optimize the extraction of inulin from Inula helenium. Four factors, including time, temperature, solvent-to-sample ratio, and pH and yield as response were selected. Inulin was purified using a hot water extraction followed by a slurry of calcium hydroxide and phosphoric acid. TLC-FLD, MALDI-TOF, and spectrophotometric methods were used to characterize and compare the DP of inulin. Results: RSM proposed a maximum yield (10.1 %) at a temperature of 79.6 °C, time of 31.9 min, the solvent-to-sample ratio of 39.9: 1, and pH of 7.7. The quality of extracted inulin was evaluated as follow: FT-IR spectra indicated typical bands at 820, 864, and 932 cm-1 that assigned the presence of 2-ketose, β-(21) fructofuranosyl unit, and α-D-glucopyranose residue. Inulin with DP (16) and molecular weight 2633 Da was determined in MALDI-TOF. Furthermore, TLC-FLD confirmed the approximate fructose and DP from (1-15). Also, the spectrophotometric method showed an approximate number of 22.3 ± 0.04 as the DP. Conclusion: In conclusion, the optimized isolation factors for inulin from the Inula helenium were proposed. In comparison with the spectrophotometric result, TLC-FLD quantitative result is much more confirmable to MALDI-TOF. TLC-FLD technique offered a simple and more precise than the spectrophotometric method for the quality of inulin.
Full-Text [PDF 668 kb]   (872 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2022/03/15 | Accepted: 2022/05/27 | Published: 2022/05/31

References
1. Petkova NT, Sherova G and Denev PP. Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions. Int. Food Res. J. 2018; 25(5): 1876-1884.
2. Petkova N, Ognyanov M, Todorova M and Denev P. Ultrasound-assisted extraction and characterisation of inulin-type fructan from roots of elecampane (Inula helenium L.). ASN. vol. 1, 2015; 1: 225-235.
3. Petkova NT, Vrancheva R, Mihaylova D, Ivanov I, Pavlov A and Denev P. Antioxidant activity and fructan content in root extracts from elecampane (Inula helenium L.). J. Bio. Sci. Biotechnol. 2015; 4(1): 101-107.
4. Kenny CR, Stojakowska A, Furey A and Lucey B. From monographs to chromatograms: The antimicrobial potential of Inula helenium L. (Elecampane) naturalisedin Ireland. Molecules. 2022; 27(4): 1406-1427. [DOI:10.3390/molecules27041406]
5. Rubela IA, Iraporda C, Novosad R, Cabrera FA, Genovese DB, and Manriquea GD. Inulin rich carbohydrates extraction from Jerusalem artichoke (Helianthus tuberosus L.) tubers and application of different drying methods. Food Res. Int. 2018; 103: 649-667. [DOI:10.1016/j.foodres.2017.10.041]
6. Singla V and Chakkaravarthi S. Applications of prebiotics in food industry: A review. Food Sci. Technol. Int. 2017; 23(8): 226-233. [DOI:10.1177/1082013217721769]
7. Abou-Arab A.A , Talaat H.A and Abu-Salem F.M. Physico-chemical properties of inulin produced from Jerusalem Artichoke tubers on bench and pilot plant scale. Aust. J. Basic Appl. Sci. 2011; 5(5): 1297-1309.
8. Abed S.M, Ali AH, Noman A, Niazi S, Ammar A-F and Bakry AM. Inulin as prebiotics and its applications in food industry and human health; a review. Int. J. Agric. Innov. Res. 2016; 5(1): 88-97.
9. Petkova N, Ivanov I, Vrancheva R, Denev P and Pavlov A. Ultrasound and microwave-assisted extraction of elecampane (Inula helenium) roots . Nat. Prod. Commun. 2017; 12(2), 171-174. [DOI:10.1177/1934578X1701200207]
10. Dyakova NA, Gaponov SP, Slivkin AI, Belenova AS, Karlov PM and Lavrov SV. Elaboration of an express technique for inulin extraction from the roots of elecampane (Inula helenium L.). IOP Conf. Ser. Earth Environ. Sci. 2021; 640(5): 1-5. [DOI:10.1088/1755-1315/640/5/052021]
11. Pourfarzad A, Habibi Najafi MB, Haddad Khodaparast MH and Hassanzadeh Khayyat M. Characterization of fructan extracted from Eremurus spectabilis tubers: a comparative study on different technical conditions. J. Food Sci. Technol. 2015; 52(5): 2657-2667. [DOI:10.1007/s13197-014-1310-1]
12. Perović J, Kojić J, Krulj J, Pezo L, Šaponjac VT, Ilić N and Bodroža-Solarov M. Inulin determination by an improved HPLC-ELSD method. Food Anal. Methods. 2022; 15: 1001-1010. [DOI:10.1007/s12161-021-02140-y]
13. Başaran U, Akkbik L, Mut H, Gülümser E, Doğrusöz MC and Koçoğlu S. High-performance liquid chromatography with refractive index detection for the determination of inulin in chicory roots. Anal. Lett. 2018; 51, 83-95. [DOI:10.1080/00032719.2017.1304952]
14. Li J, Hu D, Zong W, Lv G, Zhao J and Li S. Determination of inulin-type fructo oligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector. J. Agric. Food Chem. 2014; 62(31): 7707-7713. [DOI:10.1021/jf502329n]
15. Aldrete-Herrera PI, López MG, Medina-Torres L, Ragazzo-Sánchez JA, Calderón-Santoyo M, González-Ávila M and Ortiz-Basurto RI. Physicochemical composition and apparent degree of polymerization of fructans in five wild agave varieties: Potential industrial use. Foods. 2019; 8(9): 1-11. [DOI:10.3390/foods8090404]
16. Evans M, Gallagher JA, Ratcliffe I and Williams PA. Determination of the degree of polymerisation of fructans from ryegrass and chicory using MALDI-TOF mass spectrometry and gel permeation chromatography coupled to multiangle laser light scattering. Food Hydrocoll. 2016; 53: 155-162. [DOI:10.1016/j.foodhyd.2015.01.015]
17. Lucia DD, Manfredini S, Bernardi T and Vertuani S. High-performance thin-layer chromatography (HPTLC): A new green approach to soluble fiber determination in plant matrices. Food Anal. Methods. 2015; 8(1): 32-39 [DOI:10.1007/s12161-014-9861-3]
18. Paseephol T, Small D and Sherkat F. Process optimisation for fractionating Jerusalem artichoke fructans with ethanol using response surface methodology. Food Chem. 2007; 104(1): 73-80. [DOI:10.1016/j.foodchem.2006.10.078]
19. Zhang X, Zhu X, Shi X, Hou Y and Yi Y. Extraction and purification of inulin from Jerusalem Artichoke with response surface method and ion exchange resins. ACS omega. 2022; 7: 12048-12055. [DOI:10.1021/acsomega.2c00302]
20. Dubois, M., Gilles, K.A., Hamilton, J.K. and Smith, F. Colorimetric method for determination of sugar and related substances. Anal. Chem. 1956; 28(3): 350-356. [DOI:10.1021/ac60111a017]
21. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959; 31(3): 426-428. [DOI:10.1021/ac60147a030]
22. Lingyun W, Jianhua W, Xiaodong Z, Da T, Yalin Y, Chenggang C, Tianhua F and Fan Z. Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. J. Food Eng. 2007; 79(3): 1087-1093. [DOI:10.1016/j.jfoodeng.2006.03.028]
23. Redondo-Cuenca A, Herrera-Vazquez SE, Condezo-Hoyos L, Gomez-Ord E and Rup'erez P. Inulin extraction from common inulin-containing plant sources. Ind. Crops Prod. 2021; 170: 1-9. [DOI:10.1016/j.indcrop.2021.113726]
24. Wayne W D. Biostatistics: A foundation for ananlysis in the health sciences. fiveth ed., New York: John Wiley; 1991.
25. Li J-W, Ding S-D and Ding X-L. Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao. J. Food Eng. 2007; 80(1): 176-183. [DOI:10.1016/j.jfoodeng.2006.05.006]
26. Milani E, Koocheki A and Golimovahhed QA. Extraction of inulin from burdock root (Arctium lappa) using high intensity ultrasound. Int. J. Food Sci. Technol. 2011; 46(8): 1699-1704. [DOI:10.1111/j.1365-2621.2011.02673.x]
27. Tewari S, Ramalakshmi K, Methre L, Lingamallu JR. Microwave-assisted extraction of inulin from chicory roots using response surface methodology. J. Nutr. Food Sci. 2014; 5(1): 1-6.
28. Gupta AK, Kaur N and Kaur N. Preparation of inulin from chicory roots. J. Sci. Ind. Res. 2003; 62: 916-920.
29. Melanie H, Susilowati A, Iskandar YM, Lotulung PD and Andayani DGS. Characterization of inulin from local red dahlia (Dahlia sp. L) tubers by Infrared spectroscopy. Procedia Chem. 2015; 16: 78-84. [DOI:10.1016/j.proche.2015.12.027]
30. Ahmadi E, Rezadoost H and Farimani MM. Isolation, characterization, and antioxidant activity of neutral carbohydrates from Astragalus arbusculinus gum. S. Afr. J. Bot. 2022; 146: 669-675. [DOI:10.1016/j.sajb.2021.12.006]
31. Hernandez-Soriano MC. Evaluation of aluminum-saccharides complexes in solution by luminescence spectroscopy. Commun. Agric. Appl. Biol. Sci. 2012; 77(1): 133-137.
32. Harvey DJ. Carbohydrate analysis by ESI and MALDI. in: Electrospray and MALDI mass spectrometry. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012: 723-769. [DOI:10.1002/9780470588901.ch19]
33. Kriukova Y, Jakubiak-Augustyn A, Ilyinska N, Krotkiewski H, Gontova T, Evtifeyeva O, Özcelik T and Matkowski A. Chain length distribution of inulin from dahlia tubers as influenced by the extraction method. Int. J. Food Prop. 2017; 20(sup3): S3112-S3122. [DOI:10.1080/10942912.2017.1357043]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb