سال 20، شماره 80 - ( 9-1400 )                   سال 20 شماره 80 صفحات 101-83 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، 1983969411، تهران، ایران
2- گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، 1983969411، تهران، ایران ، m-mirjalili@sbu.ac.ir
3- گروه بیولوژی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، 1983969411، تهران، ایران
4- گروه فیتوشیمی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، 1983969411، تهران، ایران
چکیده:   (2001 مشاهده)
مقدمه: گیاه دُم اسب (Equisetum arvense L.)، به واسطه داشتن عنصر سیلیس، بطور گسترده در تولید محصولات گیاهی تقویت‌کننده ناخن و مو استفاده می‌شود. هدف: تنوع آگرومورفولوژیکی، فیتوشیمیایی و محتوای سیلیس جمعیت‌های دم اسب صحرایی جمع‌آوری شده از ایران به همراه دو نمونه تجاری گیاه از روسیه و سوئیس مورد بررسی قرار گرفت. روش بررسی: صفات مورفولوژیکی توسط خط کش و کولیس دیجیتال، چشم غیرمسلح و ترازوی دیجیتال اندازه‌گیری شدند. صفات فیتوشیمیایی توسط اسپکتروفتومتر و کروماتوگرافی مایع با کارایی بالا همراه با طیف‌سنج جرمی ارزیابی شدند. محتوای سیلیس توسط طیف‌سنجی اشعه ایکس آنالیز شد. نتایج: حداکثر ارتفاع گیاه در جمعیت سراب مشاهده شد، در حالیکه بیشترین پهنای بوته و وزن خشک ساقه در جمعیت مرزن آباد مشخص شد. بیشترین محتوای تام فنلی و فلاونوئیدی به ترتیب در نمونه روسیه و جمعیت مرزن آباد اندازه‌گیری شد. بر اساس نتایج کروماتوگرافی، محتوای ایزوکوئرسیترین از 0/03 تا 3/05 میلی‌گرم بر گرم ماده خشک به ترتیب در نمونه روسیه و جمعیت مرزن آباد متغیر بود، در حالیکه محتوای سیلیس در بین نمونه‌ها از 30 تا 87/5 میلی‌گرم بر گرم ماده خشک به ترتیب در جمعیت چَمستان و ایردموسی متغیر بود. نتیجه‌گیری: در این مطالعه، جمعیت‌های مرزن آباد و سراب از نظر صفات مورفولوژیکی برتر بودند. جمعیت مرزن‌آباد از نظر صفات فیتوشیمیایی برتر بود که می‌تواند به خوبی در برنامه‌های حفاظتی، اهلی‌سازی و تولید انبوه گیاه مورد توجه قرار گیرد. در ارتباط با محتوای سیلیس، جمعیت ایردموسی به عنوان جمعیت برتر مشخص گردید که می‌تواند در تولید فرآورده‌های گیاهی تقویت‌کننده استخوان، مو و ناخن مورد بهره‌برداری تجاری قرار گیرد.
متن کامل [PDF 1616 kb]   (1180 دریافت)    
نوع مطالعه: پژوهشی | موضوع مقاله: گياهان دارویی
دریافت: 1400/7/24 | پذیرش: 1400/9/9 | انتشار: 1400/9/10

فهرست منابع
1. Chen S-L, Yu H, Luo H-M, Wu Q, Li C-F and Steinmetz A. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine 2016; 11(1): 1-10. [DOI:10.1186/s13020-016-0108-7]
2. Rajpurohit D and Jhang T. In situ and ex situ conservation of plant genetic resources and traditional knowledge. In: Plant Genetic Resources and Traditional Knowledge for Food Security. Vol: Springer; 2015, 137-162. [DOI:10.1007/978-981-10-0060-7_8]
3. Sofowora A, Ogunbodede E and Onayade A. The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines 2013; 10(5): 210-229. [DOI:10.4314/ajtcam.v10i5.2]
4. Kumar P. The Economics of Medicinal Plants: Are High Commercial Values Enough to Ensure Biodiversity Conservation? A perspective. IUCN. 2006: 9.
5. Ghorbani S, Esmaeili H, Ebrahimi SN, Palazon J, Sonboli A and Mirjalili MH. Genetic structure, molecular and phytochemical analysis in Iranian populations of Ruscus hyrcanus (Asparagaceae). Industrial Crops and Products 2020; 154: 112716. [DOI:10.1016/j.indcrop.2020.112716]
6. Selseleh M, Hadian J, Ebrahimi SN, Sonboli A, Georgiev MI and Mirjalili MH. Metabolic diversity and genetic association between wild populations of Verbascum songaricum (Scrophulariaceae). Industrial Crops and Products 2019; 137: 112-125. [DOI:10.1016/j.indcrop.2019.03.069]
7. Hadian J, Hossein Mirjalili M, Reza Kanani M, Salehnia A and Ganjipoor P. Phytochemical and morphological characterization of Satureja khuzistanica Jamzad populations from Iran. Chemistry & Biodiversity 2011; 8(5): 902-915. [DOI:10.1002/cbdv.201000249]
8. Mozaffarian V. A dictionary of Iranian plant names, Farhang Moaser. in Tehran: Iran. Farhang Moaser Publishing. 2009, 542-544.
9. Kalbadi A. Flora of Iran, No. 61: Equisetaceae. Forests and Rangelands Research Institute; 2009.
10. Sandhu NS, Kaur S and Chopra D. Equisetum arvense: pharmacology and phytochemistry-a review. Asian Journal of Pharmaceutical and Clinical Res. 2010; 3(3): 146-150.
11. Mimica-Dukic N, Simin N, Cvejic J, Jovin E, Orcic D and Bozin B. Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules 2008; 13(7): 1455-1464. [DOI:10.3390/molecules13071455]
12. Uslu M, Mele A and Bayraktar O. Evaluation of the hemostatic activity of Equisetum arvense extract: The role of varying phenolic composition and antioxidant activity due to different extraction conditions. Biointerface Res. Appl. Chem. 2019; 9: 4157-4163. [DOI:10.33263/BRIAC94.157163]
13. Badole S and Kotwal S. Evaluation of proximate, free radical scavenging activity, and phytochemical analysis of Equisetum arvense L. extracts. Indian Journal of Natural Products and Resources (IJNPR)[Formerly Natural Product Radiance (NPR)]. 2017; 8(2): 146-150.
14. Bayati M, Tavakoli MM, Ebrahimi SN, Aliahmadi A and Rezadoost H. Optimization of effective parameters in cold pasteurization of pomegranate juice by response surface methodology and evaluation of physicochemical characteristics. LWT. 2021; 147: 111679. [DOI:10.1016/j.lwt.2021.111679]
15. Kamtekar S, Keer V and Patil V. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science 2014; 4(9): 61.
16. Andi SA and Maskani F. Essential oil chemical diversity of twenty Iranian Origanum vulgare L. subsp. viride populations. Biochemical Systematics and Ecology 2021; 98: 104323. [DOI:10.1016/j.bse.2021.104323]
17. Hailu T, Feyissa T, Dekebo A, Hailemichael G and Gadissa F. Diversity in capsule and seed morphological and phytochemical features and essential oil composition of korarima (Aframomum corrorima (braun) PCM jansen) collections from Ethiopia. Biochemical Systematics and Ecology 2021; 97: 104275. [DOI:10.1016/j.bse.2021.104275]
18. Khadivi-Khub A, Karimi E and Hadian J. Population genetic structure and trait associations in forest savory using molecular, morphological and phytochemical markers. Gene 2014; 546(2): 297-308. [DOI:10.1016/j.gene.2014.05.062]
19. Berardi AE, Hildreth SB, Helm RF, Winkel BS and Smith SD. Evolutionary correlations in flavonoid production across flowers and leaves in the Iochrominae (Solanaceae). Phytochemistry 2016; 130: 119-127. [DOI:10.1016/j.phytochem.2016.05.007]
20. Oniszczuk A, Podgórski R, Oniszczuk T, Żukiewicz-Sobczak W, Nowak R and Waksmundzka-Hajnos M. Extraction methods for the determination of phenolic compounds from Equisetum arvense L. herb. Industrial Crops and Products 2014; 61: 377-381. [DOI:10.1016/j.indcrop.2014.07.036]
21. Pallag A, Jurca T, Pasca B, Sirbu V, Honiges A and Costuleanu M. Analysis of phenolic compounds composition by HPLC and assessment of antioxidant capacity in Equisetum arvense L. extracts. Revista de Chimie. 2016; 67(8): 1623-1627.
22. Uslu ME, Erdoğan İ, Bayraktar O and Ateş M. Optimization of extraction conditions for active components in Equisetum arvense extract. Rom. Biotechnol. Lett. 2013; 18: 8115-8131.
23. Čanadanović‐Brunet JM, Ćetković GS, Djilas SM, Tumbas VT, Savatović SS, Mandić AI, Markov SL and Cvetković DD. Radical scavenging and antimicrobial activity of horsetail (Equisetum arvense L.) extracts. International Journal of Food Science & Technol. 2009; 44(2): 269-278. [DOI:10.1111/j.1365-2621.2007.01680.x]
24. Verma N and Shukla S. Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants 2015; 2(4): 105-113. [DOI:10.1016/j.jarmap.2015.09.002]
25. Vivancos J, Deshmukh R, Grégoire C, Rémus-Borel W, Belzile F and Bélanger RR. Identification and characterization of silicon efflux transporters in horsetail (Equisetum arvense). Journal of Plant Physiol. 2016; 200: 82-89. [DOI:10.1016/j.jplph.2016.06.011]
26. Dibdiakova J, Wang L and Li H. Characterization of ashes from Pinus sylvestris forest biomass. Energy Procedia. 2015; 75: 186-191. [DOI:10.1016/j.egypro.2015.07.289]
27. Xu W, Lo TY and Memon SA. Microstructure and reactivity of rich husk ash. Construction and Bulding Materials 2012; 29: 541-547. [DOI:10.1016/j.conbuildmat.2011.11.005]
28. Trivedi NS, Mandavgane SA and Kulkarni BD. Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid. Environmental Science and Pollution Research. 2016; 23: 20087-20099. [DOI:10.1007/s11356-016-6202-7]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.