year 20, Issue 80 (12-2021)                   J. Med. Plants 2021, 20(80): 47-59 | Back to browse issues page


XML Persian Abstract Print


1- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
2- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran , h_rezadoost@sbu.ac.ir
Abstract:   (2004 Views)
Background: Ultrasonic assisted extraction (UAE) is a robust and efficient method as a desirable alternative to conventional strategies for extracting active ingredients from different parts of plants. Coupling this technique with hydrodistillation is an effective method for producing essential oil from plant material. Objective: In this study, we successfully combined ultrasonic technology with hydrodistillation (HD) and optimized the system to reduce the time of the isolation and increase the yield of the essential oil obtained from Stureja khuzistanica Jamzad (SK). Methods: In the next step, isolation time, yield, and quality of essential oils obtained by conventional and ultrasonic-assisted methods were compared. Ethyl acetate (EA) was used to recover the remaining essential oil in the distillate. Results: All oils and distillates were analyzed qualitatively and quantitatively via the GC-FID and GC-MS techniques. The minimum inhibitory concentration (MIC) of SK essential oil against Escherichia coli (0.5 mg/ml to 8.0 mg/ml) and Staphylococcus aureus (0.25 mg/ml to 8.0 mg/ml) were calculated. Conclusion: Our results show that while the obtained essential oils chemical profile and biological properties are comparable, this method can enhance essential oil isolation yield efficiency by up to 40 %.
Full-Text [PDF 913 kb]   (1222 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2021/09/18 | Accepted: 2021/11/30 | Published: 2021/12/1

References
1. Bicchi C, Liberto E, Matteodo M, Sgorbini B, Mondello L, Zellner BdA, Costa R and Rubiolo P. Quantitative analysis of essential oils: a complex task. Flavour. Fragr. J. 2008; 23: 382-39. doi: 10.1002/ffj.1905.
2. Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food. Microbiol. 2004; 94: 223-253. doi: 10.1016/j.ijfoodmicro.2004.03.022.
3. Syafiq R, Sapuan S, Zuhri M, Ilyas R, Nazrin A, Sherwani S and Khalina A. Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers. 2020; 12: 2403. doi: 10.3390/polym12102403.
4. De Castro ML, Jiménez-Carmona M and Fernandez-Perez V. Towards more rational techniques for the isolation of valuable essential oils from plants. TrAC. Trends. Analyt. Chem. 1999; 18: 708-716. doi: 10.1016/s0165-9936(99)00177-6.
5. De Castro ML and Priego-Capote F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A. 2010; 1217: 2383-2389. doi: 10.1016/j.chroma.2009.11.027.
6. Sadjia B, Naima S and Chahrazed B. Extraction of thyme (Thymus pallecens de Noé) essential oil by steam-distillation, steam-diffusion and hydrodistillation processes: optimization of operating conditions and antioxidant activity. J. Essent. Oil-Bear. Plants 2012; 15: 336-347. doi: 10.1080/0972060X. 2012.10644056.
7. Lucchesi ME, Chemat F and Smadja J. Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydrodistillation. J. Chromatogr. A. 2004; 1043: 323-327. doi: 10.1016/j.chroma. 2004.05.083.
8. Deng C, Yao N, Wang A and Zhang X. Determination of essential oil in a traditional Chinese medicine, Fructus amomi by pressurized hot water extraction followed by liquid-phase microextraction and gas chromatography–mass spectrometry. Anal. Chim. Acta. 2005; 536: 237-244. doi: 10.1016/j.aca.2004.12.044.
9. Kaufmann B and Christen P. Recent extraction techniques for natural products: microwave‐assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002; 13: 105-113. doi: 10.1002/pca.631.
10. Pourmortazavi SM and Hajimirsadeghi SS. Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A. 2007; 1163: 2-24. doi: 10.1016/j.chroma.2007.06.021.
11. Pingret D, Fabiano-Tixier A-S and Chemat F. An improved ultrasound clevenger for extraction of essential oils. Food Anal. Methods 2014; 7: 9-12. doi: 10.1007/s12161-013-9581-0.
12. Kowalski R, Gagoś M, Kowalska G, Pankiewicz U, Sujka M, Mazurek A and Nawrocka A. Effects of ultrasound technique on the composition of different essential oils. J. Anal. Methods. Chem. 2019; 2019. doi: 10.1155/ 2019/6782495.
13. Boubechiche Z, Chihib N-E, Jama C and Hellal A. Comparison of volatile compounds profile and antioxydant activity of Allium sativum essential oils extracted using hydrodistillation, ultrasound-assisted and sono-hydrodistillation processes. Indian. J. Pharm. Educ. Res. 2017; 51: S281-S285. doi: 10.5530/ijper.51.3s.30.
14. Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S and Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017; 34: 540-560. doi: 10.1016/j.ultsonch.2016.06.035.
15. Esclapez M, García-Pérez JV, Mulet A and Cárcel J. Ultrasound-assisted extraction of natural products. Food. Eng. Rev. 2011; 3: 108. doi: 10.1007/s12393-011-9036-6.
16. Santos H and Capelo J. Trends in ultrasonic-based equipment for analytical sample treatment. Talanta. 2007; 73: 795-802. doi: 10.1016/ j.talanta.2007.05.039.
17. Oakley CG, Ranalletta JV, Douglas SJ and Law WK. Ultrasonic probe having articulated structure and rotatable transducer head. Google Patents. 1995, US5413107A.
18. Moholkar VS, Sable SP and Pandit AB. Mapping the cavitation intensity in an ultrasonic bath using the acoustic emission. AIChE. J. 2000; 46: 684-694. doi: 10.1002/aic.690460404.
19. Morsy NF. A short extraction time of high quality hydrodistilled cardamom (Elettaria cardamomum L. Maton) essential oil using ultrasound as a pretreatment. Ind. Crop. Prod. 2015; 65: 287-292. doi: 10.1016/j.indcrop.2014. 12.012.
20. Nora FMD and Borges CD. Ultrasound pretreatment as an alternative to improve essential oils extraction. Cienc. Rural. 2017; 47. doi: 10.1590/0103-8478cr20170173.
21. Perera CO and Alzahrani MAJ. Ultrasound as a pretreatment for extraction of bioactive compounds and food safety: A review. LWT. 2021; 142: 111114. doi: 10.1016/ j.lwt.2021. 111114.
22. Smigielski KB, Majewska M and Kunicka-Styczyñska A and Gruska R. The effect of ultrasound-assisted maceration on the bioactivity, chemical composition and yield of essential oil from waste carrot seeds (Daucus carota). J. Essent. Oil-Bear. Plants 2014; 17: 1075-1086. doi: 10.1080/0972060X. 2014. 931253.
23. Hashemi SMB, Khaneghah AM, Koubaa M, Barba FJ, Abedi E, Niakousari M and Tavakoli J. Extraction of essential oil from Aloysia citriodora Palau leaves using continuous and pulsed ultrasound: Kinetics, antioxidant activity and antimicrobial properties. Process. Biochem. 2018; 65: 197-204. doi: 10.1016/ j.procbio.2017. 10.020.
24. Wu Y, Jiang X, Zhang L and Zhou Y. Ultrasonic-Assisted Extraction, Comparative Chemical Composition and Biological Activities of Essential Oils of Fresh and Dry Aboveground Parts of Artemisia annua L. J. Essent. Oil-Bear. Plants. 2018; 21: 1624-1635. doi: 10.1080/ 0972060X.2019.1574244.
25. Liu X-Y, Ou H, Xiang Z-B and Gregersen H. Optimization, chemical constituents and bioactivity of essential oil from Iberis amara seeds extracted by ultrasound-assisted hydrodistillation compared to conventional techniques. J. Appl. Res. Med. Aromat. Plants 2019; 13: 100204. doi: 10.1016/ j.jarmap.2019. 100204.
26. Santos KA, Klein EJ, da Silva C, da Silva EA and Cardozo-Filho L. Extraction of vetiver (Chrysopogon zizanioides) root oil by supercritical CO2, pressurized-liquid, and ultrasound-assisted methods and modeling of supercritical extraction kinetics. J. Supercrit. Fluids 2019; 150: 30-39. doi: 10.1016/ j.supflu.2019.04.005.
27. Yang Y-C, Wei M-C and Hong S-J. Ultrasound-assisted extraction and quantitation of oils from Syzygium aromaticum flower bud (clove) with supercritical carbon dioxide. J. Chromatogr. A. 2014; 1323: 18-27. doi: 10.1016/ j.chroma.2013.10.098.
28. Ćavar S, Maksimović M, Šolić ME, Jerković-Mujkić A and Bešta R. Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils. Food. Chem. 2008; 111: 648-653. doi: 10.1016/ j.foodchem.2008.04.033.
29. Cavero RY and Calvo MI. Medicinal plants used for musculoskeletal disorders in Navarra and their pharmacological validation. J. Ethnopharmacol. 2015; 168: 255-259. doi: 10.1016/j.jep.2015.03.078.
30. Dogan Y and Ugulu I. Medicinal plants used for gastrointestinal disorders in some districts of Izmir province, Turkey. Stud. Ethno-Med. 2013; 7: 149-161. doi: 10.1016/j.jep.2015.03.078.
31. Abdolhosseini S, Dabaghian FH, Mehrabani M and Mokaberinejad R. A review of herbal medicines for nausea and vomiting of pregnancy in traditional Persian medicine. GMJ. 2017; 6: 281-290. doi: 10.22086/gmj.v0i0.809.
32. Momtaz S and Abdollahi M. An update on pharmacology of Satureja species; from antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. Int. J. Pharmacol. 2010; 6: 343-356. doi: 10.3923/ ijp.2010.346.353.
33. Assaei R and Pajouhi N. Use of Satureja khuzestanica Essential Oil (SKEO) in the Treatment of Diarrhea: Modes of Action on Intestinal Function in Animal Model. Herb. Med. J. 2018; 3: 101-108. doi: 10.22087/herb med j.v3i3.743.
34. Baydar H, Sağdiç O, Özkan G and Karadoğan T. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food. Control 2004; 15: 169-172. doi: 10.1016/S0956-7135(03)00028-8
35. Jamzad Z. A survey of Lamiaceae in the flora of Iran. Rostaniha. 2013; 14: 59-67. doi: 10.22092/BOTANY.2013.101317.
36. Atarés L and Chiralt A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends. Food. Sci. Technol. 2016; 48: 51-62. doi: 10.1016/j.tifs. 2015.12.001.
37. Deans S and Svoboda KP. Antibacterial activity of summer savory (Satureja hortensis L) essential oil and its constituents. Int. J. Hortic. Sci. 1989; 64: 205-210. doi: 10.2298/ ABS1001159M.
38. Sparkman OD. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. J. Am. Soc. Mass Spectrom. 2005; 16: 1902-1903. doi.org/10.1016/j.jasms. 2005.07.008.
39. Ghorbanpour M, Hadian J, Hatami M, Salehi-Arjomand H and Aliahmadi A. Comparison of chemical compounds and antioxidant and antibacterial properties of various Satureja species growing wild in Iran. J. Med. Plant Res. 2016; 15: 58-72.
40. Gouda M, Bekhit AE-D, Tang Y, Huang Y, Huang L, He Y and Li X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. Ultrason. Sonochem. 2021; 73: 105538-105548. doi: 10.1016/ j.ultsonch.2021.105538.
41. Khaledi A and Meskini M. A systematic review of the effects of Satureja khuzestanica Jamzad and Zataria multiflora Boiss against Pseudomonas aeruginosa. Iran. J. Med. Sci. 2020; 45: 83. doi: 10.30476/IJMS.2019.72570.
42. Nora F.M.D. and Borges C.D. Ultrasound pretreatment as an alternative to improve essential oils extraction. Cienc. 2017; 47: 1-9. doi: 10.1590/0103-8478cr20170173.
43. Seghatoleslami S, Samadi N, Salehnia A and Azimi S. Antibacterial activity of endemic Satureja khuzistanica Jamzad essential oil against oral pathogens. Iran. Endod. J. 2009; 4: 5. doi: 10.22037/iej.v4i1.1129.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.