year 18, Issue 72 (11-2019)                   J. Med. Plants 2019, 18(72): 160-169 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ashrafi Parchin R, Nasrollah Nezhad Ghomi A, Naghdi Badi H, Eskandari A, Navabpour S, Mehrafarin A. Effect of Gamma Irradiation on Growth and Trigonelline Content in Hairy Root of Iranian Fenugreek (Trigonella foenum-graecum L.). J. Med. Plants 2019; 18 (72) :160-169
URL: http://jmp.ir/article-1-2712-en.html
1- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2- Medicinal Plants Research Centre, Institute of Medicinal Plants, ACECR, Karaj, Iran
3- Nuclear Agriculture Research School- Nuclear Science and Technology Research Institute, Karaj. Iran
Abstract:   (3439 Views)
Background: Fenugreek is a valuable medicinal plant and it is essential to investigate induction of mutations in order to increase its active ingredient.
Objectives: In this study, the phytochemical and growth traits in hairy and normal roots of Fenugreek in response to gamma irradiation were evaluated.
Method: In this study, gamma irradiation was applied to Iranian Fenugreek seeds in five doses (0, 100, 200, 300 and 400 Gy), and then the irradiation effects in root hair culture conditions in a completely randomized design (CRD) with three replications were evaluated. In order to induce hairy roots in fenugreek, ATCC15834 strain of Agrobacterium rhizogenesis was used.
Results: The results showed that the different irradiation doses had a significant effect on all traits in normal and hairy roots. The comparison of mean of data showed that the highest values of traits were related to 100 Gy and the lowest values of traits related to irradiation of seeds with 400 Gy doses. The trigonelline content was significantly higher in hairy roots than normal roots, so that the amount of trigonelline of hairy roots at different treatments including 0, 100, 200, 300 and 400 Gy were 2.46, 2.67, 2.66, 2.44 and 2.64 times more than normal roots, respectively.
Conclusion: The results indicated that the cell proliferation, growth and amount of trigonelline were increased due to the stimulating effect of low doses of gamma irradiations.
Full-Text [PDF 790 kb]   (1321 Downloads)    
Type of Study: Research | Subject: Biotechnology
Received: 2018/11/17 | Accepted: 2019/01/19 | Published: 2019/10/28

References
1. Thomas JE, Bandara M, Lee EL, Driedger D and Acharya S. Biochemical monitoring in fenugreek to develop functional food and medicinal plant variants. New Biotechnol. 2011; 28: 110 - 7. [DOI:10.1016/j.nbt.2010.09.001]
2. Raju J, Patlolla JM, Swamy MV and Rao CV. Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiol. Biomarkers Prev. 2004; 8: 1392 - 8.
3. Aswar U, Bodhankar SL, Mohan V and Thakurdesai PA. Effect of furostanol glycosides from Trigonella foenum-graecum on the reproductive system of male albino rats. Phytother. Res. 2010; 24: 1482 - 8. [DOI:10.1002/ptr.3129]
4. Mahmoud NY, Salem RH and Mater AA. Nutritional and biological assessment of wheat biscuits supplemented by fenugreek plant to improve diet of anemic rats. J. Acad. Nutr. Diet. 2012; 1: 1 - 9.
5. Piao CH, Bui TT, Song CH, Shin HS, Shon DH and Chai OH. Trigonella foenum-graecum alleviates airway inflammation of allergic asthma in ovalbumin-induced mouse model. Biochem. Biophys. Res. Commun. 2017; 482: 1284 - 8. [DOI:10.1016/j.bbrc.2016.12.029]
6. Jiang W, Gao L, Li P, Kan H, Qu J, Men L, Liu Z and Liu Z. Metabonomics study of the therapeutic mechanism of fenugreekgalactomannan on diabetic hyperglycemia in rats, byultra-performance liquid chromatography coupled with quadrupoletime-of-flight mass spectrometry. J. Chromatogr. B. 2017; 1044 - 5: 8 - 16. [DOI:10.1016/j.jchromb.2016.12.039]
7. Al-Habori M and Raman A. Pharmacological properties. In: Petropoulos G (ed) Fenugreek-the genus Trigonella. Taylor & Francis, London. 2002, pp: 162-82.
8. Aasim M, Khawar KM, Yalcin G and Bakhsh A. Current trends ın fenugreek bıotechnology and approaches towards its improvement. AJSIH. 2014; 4: 127-36.
9. Shahabzadeh Z, Bahram H and Faramarzi Hafez R. Induction of Transgenic Hairy Roots in Trigonella foenumgraceum Co-cultivated with Agrobacterium rhizogenes harboring a GFP Gene. J. Crop Sci. Biotechnol. 2013; 16 (4): 263 - 8. [DOI:10.1007/s12892-013-0082-x]
10. Cao D, Hou W, Song S, Sun H, Cao Y and Han T. Assessment of conditions affecting Agrobacterium rhizogenesmediated transformation of soybean. Plant Cell Tissue Organ Cult. 2009; 96: 45 - 52. [DOI:10.1007/s11240-008-9458-x]
11. Giri A, Ravindra ST, Dhingra V and Narasu L. Influence of different strains of Agrobacterium rhizogenes on induction of hairy roots and artemisinin production in Artemisia annua. Current Sci. 2001; 81: 378 -82.
12. Veena V and Taylor GG. Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell. Dev. Biol. Plant 2007; 433: 384 - 403. [DOI:10.1007/s11627-007-9096-8]
13. Yang C, Chen M, Zeng L, Zhang L, Liu X, Lan X, Tang K and Liao Z. Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by over expressing pmt and h6h genes. Plant Omics J. 2011; 4: 29 - 33. [DOI:10.1111/j.1399-3054.2011.01506.x]
14. Vrishali VK, Snehal SD and Neha A. Gurave Hairy Root Culture: A Promising Approach in Biotransformation. Asian J. Plant Sci. Res. 2016; 6 (4): 6 - 11.
15. Eapen S and Mitra R. Plant Hairy Root Cultures: Prospects and Limitations. Indian Natl. Sci. Acad. 2001; 3 (4): 107-20.
16. Lee HB, Kim Y, Jin HZ, Lee JJ, Kim CJ, Park JY and Jung HS. A new Hypocrea strain producing harzianum A cytotoxic to tumour cell lines. Lett. Appl. Microbiol. 2005; 40: 497-503. [DOI:10.1111/j.1472-765X.2005.01719.x]
17. Hu ZhD and Du M. Hairy root and its application in plant genetic engineering. J. Integr. Plant Biol. 2006; 48 (2): 121−7. [DOI:10.1111/j.1744-7909.2006.00121.x]
18. Datta P, Dasgupta A, Kumar Singh A, Mukherjee P, Kundu M and Basu J. Interaction between FtsW and penicillin‐binding protein 3 (PBP3) directs PBP3 to mid‐cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol. Microbiol. 2006; 62 (6), 1655-73. [DOI:10.1111/j.1365-2958.2006.05491.x]
19. Agrawal RS, Shirale DO, Syed HM and Syed AAR. Physico-chemical properties of fenugreek (Trigonella foenum - graceum L.) seeds. IJLTEMAS. 2015; 1 - 3.
20. Yaqoob M and Rashid A. Induced mutation studies in some mungbean (Vigna radiata L.) Wilczek cultivars. J. Biol. Sci. 2001; 1: 805 - 8. [DOI:10.3923/jbs.2001.805.808]
21. Sharma RP and Chopra VL. Plant Breeding-Theory and Practice. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi. 2000, pp: 321-42.
22. Ghasemi Bezdi K and Ahmadi A. Cell and tissue culture biotechnology (in micropropagation and plant breeding. Makhtomgoli Faraghi. 2010; pp: 254.
23. Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay M, Maas WE, Dobson CM and Griffin RG. Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J. Am. Chem. Soc. 2011, 133 (35): 13967 - 74. [DOI:10.1021/ja203756x]
24. Jain SM. Mutagenesis in crop improvement under the climate change. Rom. Biotechnol. Lett. 2010; 15 (2): 88-106.
25. Jain SC and Agrawal M. Effect of mutagens on steroidal sapogenin in Trigonella foenumgraecum tissue cultures. Fitoterapia 1994; 65 (4): 367 - 75.
26. Topuz A and Ozdemir F. Influences of gamma irradiation and storage on the capsaicinoids of sun-dried and dehydrated paprika. Food Chem. 2004; 86: 509 - 15. [DOI:10.1016/j.foodchem.2003.09.003]
27. Kim DS, Song M, Kim SH, Jang DS, Kim JB, Ha BK, Kim SH, Lee KJ, Kang SY, Jeong IY. The improvement of ginsenoside accumulation on Panax ginseng as a result of g-irradiation. J. Ginseng Res. 2013; 37 (3): 332 - 40. [DOI:10.5142/jgr.2013.37.332]
28. Doyle JJ and Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990; 12: 13 - 5.
29. Stennert A and Gerhard Maier H. Trigonelline in coffee. Z Lebensm Unters Forsch. 1994; 199: 198-200. [DOI:10.1007/BF01193443]
30. Khater MA, El-Awadi ME, Elashtokhy MMA, Abdel-Baky YR and Shalaby MAF. Physiological and molecular changes in fenugreek (Trigonella foenum-graecum L.) as a response to gamma rays. Int. J. Pharmtech Res. 2016; 9 (12): 306 - 16.
31. Hanafy RS and Akladious SA. Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) plants. J. Genet. Biotechnol. 2018; 1-10.
32. Charbaji T and Nabulsi I. Effect of Low Doses of Gamma Irradiation on in Vitro Growth of Grapevine. PCTOC. 1999; 57: 129 - 32. [DOI:10.1023/A:1006360513965]
33. Chung HJ, Kim MJ, Lim JY, Park SM, Cha BJ, Kim YH, Yang MS and Kim DH. A gene encoding phosphatidyl inositol-specific phospholipase C from Cryphonectria parasitica modulates the lac1 expression. Fungal Genet. Biol. 2006; 43 (5): 326 - 36. [DOI:10.1016/j.fgb.2005.12.009]
34. Fulzele DP, Satdive RK, Kamble S, Singh S and Singh S. Improvement of anticancer drug camptothecin production by gamma irradiation on callus Cultures of Nothapodytes foetida. IJPRAS. 2015; 4 (1): 19 - 27.
35. Sharp JM and Doran PM. Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol Prog. 2001; 17: 979 - 92. [DOI:10.1021/bp010104t]
36. Jan S, Parween T, Siddiqi TO and Mahmooduzzafar. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environ. Rev. 2012; 20: 17 - 39. [DOI:10.1139/a11-021]
37. Ahmed FA, Ghanem SA, Reda AA and Solaiman M. Effect of some growth regulators and subcultures on callus proliferation and trigonelline content of fenugreek (Trigonella foenum-graecum). Bulletin of the National Research Centre. 2000; 25: 35 - 46.
38. El-Beltagi HS, Ahmed OK and El-Desouky W. Effect of low doses g-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus culture. Radiat. Phys. Chem. 2011; 80 (9): 968 - 76. [DOI:10.1016/j.radphyschem.2011.05.002]
39. Zhang JY, Bae TW, Boo KH, Sun HJ, Song IJ, Pham CH, Ganesan M, Yang DH, Kang HK, Riu KZ, Lim PO and Lee HY. Ginsenoside production and morphological characterization of wild ginseng (Panax ginseng Meyer) mutant lines induced by g-irradiation (60 co) of adventitious roots. J. Ginseng Res. 2011; 35 (3): 283 - 93 [DOI:10.5142/jgr.2011.35.3.283]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb