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Abstract

In recent years, metabolism researches using nanomaterials have been focusing on human and
animal cells, and therefore very limited data are available about influence of nanomaterials on
biosynthesis of secondary metabolites in plant cells. Plants produce different types of secondary
metabolites including terpenoids, phenolics, tannins, and alkaloids, which are known to act as
vital mediators for the interaction with other living (biotic) or non-living (abiotic) agents under
stressful conditions. Elicitors may induce physiological and biochemical processes of the target
plants and activate defense mechanisms. Application of signaling molecules as elicitors has
evolved an efficient technique for the production of pharmaceutically active compounds in plants.
However, relatively little has been done regarding the application of nanomaterials as potential
elicitors for production of industrially valuable compounds. Here, we provide studies proving that
nanomaterials can function as elicitors of plant defensive chemistry that are mostly accompanied
by enhanced production of different secondary metabolites.
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Introduction

Nanomaterials are specified as materials
with external dimensions in the nanoscale or
with internal structure or surface structure in
the nanoscale. This would qualify most of the
materials as nanomaterials, as their internal
structure is modulated at the nanoscale. The
term nanoscale can be defined as a size range
between approximately 1-100 nm [1].

From the point of view of their
dimensionality, nanomaterials are broadly
classified in to the three types: with one, two,
and three dimensions in the nanoscale regime.
Those with one dimension in the nanoscale are
very thin films or coatings attached on a
substrate. Those with two dimensions in the
nanoscale can be porous films with nanoscale
pores, long aspect ratio fibers, wires or tubes.
Finally, nanomaterials with three dimensions
within the nanoscale regime are membranes
with nanopores on a substrate, and
nanoparticles [2].

Nanoparticles are manufactured for various
applications such as medicine, chemistry,
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biology, electronics, environment, textiles,
energy storage, and food and agriculture, and
mainly include the following types: (1)
Carbon-based nanomaterials such as carbon
nanotubes, graphene and fullerenes (C60 and
C70); (2) Metal-based nanomaterials including
zero-valent metals (e.g. Au, Ag, and Fe
nanomaterials), metal oxides (e.g. nano-ZnO, -
TiO2 and -Ce0O»), and metal salts (e.g. nano
silicates and ceramics); (3) Quantum dots (e.g.
CdSe and CdTe); (4) Nanosized polymers (e.g.
dendrimers and polystyrene).

Today’s, the
nanomaterials has been expanded in various
areas due to their unique properties (Figure 1)
such as large surface area-to-volume ratio,
ability to engineer electron exchange,
extraordinary electronic and optical attributes,
and highly surface reactive capabilities [3].
However, our knowledge of the direct
interactions between engineered nanomaterials
and plant cells is still relatively new [4-7].

range of application of
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Figure 1- Nanoparticels and their basic characteristics [8]
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A plant cell produces two different kinds of
metabolites (Figure 2): primary metabolites
involved directly in normal plant growth and
metabolic processes including carbohydrates,
proteins and lipids, and secondary
metabolites/or secondary compounds
considered as ultimate products of primary
metabolism and not involved in metabolism
such as alkaloids, phenolics, essential oils,
sterols, steroids, lignins and tannins, etc. Plant
secondary metabolites are organic substances
that are not directly involved in growth and
development as well as in reproduction; rather,

Co,

they play some crucial role in different
signaling cascades, defense mechanism against
microorganisms, etc. Secondary plant products
are considered for their important function in
the survival of the plant in its ecosystem, time
and again protecting plants against pathogen
attack, insect attack, mechanical injury, and
other types of biotic and abiotic stresses [9]. It
has been acknowledged that most of these
plant secondary metabolites have some
beneficial role in the human body, therefore,
these are considered as phytomedicines.
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Figure 2- A simplified model of the pathways involved in the biosynthesis of secondary metabolites [10]
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Usually, secondary metabolites, a rich
source of pharmaceuticals with defensive
properties, are synthesized by plants when
exposed to different elicitors and/or inducer
molecules [11, 12]. Nowadays, various biotic
and abiotic elicitors are practiced to trigger
and concentrate the secondary metabolites and
cell volume in suspension culture [13]. Among
the various strategies available to increase the
levels of metabolite of interest, application of
elicitors in suspension culture is mostly trusted
and practiced strategy. Elicitors in a precise
concentration can be administered at desirable
time to the suspension culture, resulting in
achieving the highest levels of metabolite in a
short span of time [14].

Nanomaterials have the great potential to be
applied as novel effective abiotic elicitors in
plant  biotechnology for inducing the
biosynthesis of secondary metabolite [15]. In
recent years, many researchers have studied
the nano-elicitive role of nanomaterials as
elicitors for secondary metabolite production
in plant cell and tissue cultures [16-25].
Furthermore, a number of studies have
affirmed  the  possible  function  of
nanomaterials as elicitors for increasing the
expression level of involved genes in
biosynthesis of secondary metabolites [23, 25].
Nanoscale materials have successfully offered
a new approach in improving plant secondary
metabolite production [26]. However, still in-
depth and consolidate guidance and practical
advice in research are required to elucidate the
impacts of nanomaterials in elicitation
mechanisms of secondary metabolites in
medicinal and aromatic plants.
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Uptake and translocation of nanoparticles
to plant cell

To fully wunderstand the nature of
nanoparticle-plant interactions, it is necessary
to deeply characterize the entry, uptake,
translocation, accumulation, biotransformation
and fate and risks of these materials inside
plant cells, tissues and organelles. Many
factors affect the plant uptake of nanoparticles
such as exceptional characteristics of
nanoparticles, interaction of the nanoparticles
with the environment, and plant physiological
indices (Figure 3).

Nanoparticles may form complexes with
transporter plasma membrane proteins or root
exudates which  mediate  nanoparticles
localization into the xylem vessels [27].

Physicochemical properties of
nanomaterials such as surface roughness and
charge, and hydrophobicity degree promote
surface binding and the subsequent cellular
uptake of nanoparticles. The entry and
transportation of nanoparticles may happen via
root to leaf/fruit (below- to aerial organs) or
leaf to root (aerial to below-ground organs)
pathways [28], a key point that makes both
foliar and soil applications feasible in plant-
soil ecosystems.

When exposed to plant roots (soil mixed-
nanoparticles entry rout), nanoparticles
transport may occur through both apoplastic
and symplastic pathways [29]. In order to
allow the direct penetration of nanoparticles,
the cell wall pore size should be less than 20
nm in diameter, [30], therefore; larger particles
would have limited ability to enter epidermal
cells. After penetrating the cell walls,

¥
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Figure 3- Multiple factors affecting nanoparticles uptake, translocation and penetration in plants. (A)
Characteristics of nanoparticles influence on their uptake and transportation in the plant tissues, and different procedures of
nanoparticles application. (B) Interaction of nanoparticles with soil microorganisms and compounds. (C) Various pathways
of nanoparticles translocation in plants (D) Nanoparticles internalization ways in plant cells [42].

nanoparticles may be diffused between cell
walls and plasma membrane, and their
subsequent movements may be regulated by
two forces, osmotic pressure and capillary
exchange [31]. Other than transporter proteins
(carriers) such as aquaporins (water channels)
and the presence of ion channels, nanoparticles
can also reach inside the cells through
endocytosis or membrane piercing processes
[32].

Endocytic uptake (a type of active
transport) process occurs where specific
receptor-ligand binding interactions happen.
On the basis of their morphology, engineered
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nanomaterials such as carbon nanotubes are
able to enter the cytoplasm of cells by directly
piercing the membrane [33]. Within the
cytoplasm, nanoparticles interact dynamically
with the surrounding environment through
several forces such as van der Waals,
electrostatic, hydrogen bonds, solvation forces,
and steric-polymer interactions. Subsequently,
protein molecules bind onto nanoparticles
surfaces and constitute complex structures
referred to as protein corona [34]. The protein
corona may affect cellular uptake,
accumulation/ aggregation, and degradation of
the nanoparticles [35]. These internalized
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nanoparticles-endosome  or  nanoparticles-
protein complexes may transfer to neighboring
plant cells via small channels called
plasmodesmata [29]. The cytoskeleton
microfilaments  reorganization may be
interrupted by nano-scale titanium dioxide
(TiOy) exposure, influencing the
plasmodesmata sustainability [36].

Once inside the cells, nanoparticles may
interact with organelles and disrupt the
metabolic processes, produce oxidative stress,
and genetic modifications.

When applied to the foliage of the plant
(aerosol-nanoparticles entry rout),
nanoparticles were capable of penetrating
leaves through stomatal pores [37-39]. For
instance, evidences of the internalization were
observed in lettuce leaves exposed to Ag [37]
and TiO2 [38] nanoparticles. From the initial
sites of exposure/entry, nanoparticles could be
subsequently translocated to other parts and
vascular tissues such as roots [39]. The cellular
internalization of nanoparticles in suspension
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culture systems, may occur through a
mechanism primarily based on fluid phase
pinocytosis, which is the inclusion of solutes
from the apoplast to the vacuole occurred
through vesicles formation at the plasma
membrane [40, 41].

After  penetration into plant cells,
nanoparticles interact with intracellular
components/molecules, organelles and
structures. The nature of interaction between
nanoparticles and two target cell organelles
namely chloroplasts and mitochondria, could
be chemical or physical variations. Both type
of nanomaterials (i.e., carbon-based and metal-
based) are able to induce stress and produce
excessive reactive oxygen species (ROS),
which subsequently affect cell organelles and
structures, DNA, proteins, carbohydrates,
lipids, and secondary metabolites in plants [43,
44]. As presented in Figure 4, nanomaterials
can cause toxic effects on plants at both the

Mitochondrion

Cell wall
Golgi apparatus

Vacuole

Nucleus

Cell Membrane

Reticulum

Ribosome

Chloroplast

@ Nanoparticles
W Nanotubes

A Vetalions
lon leakage

Figure 4- Schematic model of potential cellular damages and subsequent detoxification mechanisms under
nanoparticles exposure [48].
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cellular (cell membrane and chromosomal
damage, and chlorophyll  biosynthesis
disruption) and physiological  (biomass
reduction, root length inhibition, etc.) levels
[45-47]. Many researchers have extensively
devoted their efforts to recognize the exact
mechanisms of plant defense systems against
nanomaterials-induced  oxidative  stress.
Although, rapid progress has been made
worldwide in recent years, there are many
uncertainties and gaps in our present
knowledge of ROS-dependent injury and its
impacts on plant cells. It is critical to
understanding and evaluating nanoparticles
toxicity, and triggering the antioxidant defense
systems as major plant response mechanisms.

Interaction of nanoparticles with plant
cells

In order to enter the symplastic (inner side
of the plasma membrane) pathway,
nanoparticles should be internalized through
the plant cell and cross the plasma membrane
(Figure 5). There are several routs for
nanoparticles to attain this [32, 49]:

— Endocytosis: The nanoparticles are
included into the cell by invagination (inner
folding) of the plasma membrane, developing
a vesicle that can move to various
compartments of the cell [50].

— Pore formation: Nanoparticles are able
to interrupt the plasma membrane, forming
pores for passing into the cell [51] and arriving
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Figure 5- The possible pathways of nanoparticles uptake in a plant cell [32].
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directly into the cytosol without being
encapsulated in any cell organelle [52].

— Carrier proteins: Nanoparticles can
wrap to surrounding proteins, comprising cell
membrane proteins that could perform as
carriers for internalization and uptake within
the cell [34]. Particularly, aquaporins (water
channels) have been suggested as transporters
of nanoparticles within the cell [32], but their
small pore size (2.8-3.4 A) [53], makes them
implausibly as channels for nanoparticle
penetration [49], unless such pore size could
be modified and enlarged.

— Plasmodesmata: Nanoparticles can reach
to the cell through another path called
plasmodesmata (narrow channels that act as
intercellular cytoplasmic bridges to facilitate
communication and transport of materials
between plant cells) [54, 55].

— lon channels: These are pore-forming
membrane proteins that allow ions to pass
through the channel pore, and it has been
proposed as probable pathways for
nanoparticles entry into the cell [32, 49].
However, the size of such channels is around 1
nm, which makes very improbably for
nanoparticles to effectively cross them without
important modifications; therefore, particles
with larger size would have limited ability to
enter cells [56].

Biosynthesis  of
metabolites upon
nanomaterials
Alkaloids

Alkaloids are among a group of naturally
occurring chemical compounds of plant cells
that are affected via exposure to different types

plant  secondary
exposure  to

... Nano-Elicitation of

of nanoelicitors. Ghorbanpour et al. (2015)
reported that titanium dioxide nanoparticles
(TiO2 NPs, 10-15 nm) and their bulk
counterparts (TiO2> BPs) act as elicitors for
elicitation of two main tropane alkaloids
including hyoscyamine and scopolamine in
black henbane (Hyoscyamus niger L.) at
concentrations of 20, 40 and 80 mg/L. They
reported that at the highest TiO2 concentration
(80 mg/L), the maximum content of
hyoscyamine (0.286 g/kg) was observed
compared to plants exposed to TiO2 BPs
(0.161 g/kg), whereas, maximum scopolamine
content reached to peak at the lowest TiO2 NPs
concentration. Moreover, application of TiO;
NPs at 40 mg/L increased the total alkaloids
yield 2.5 times than control, mainly due to
higher accumulation of biomass and improved
biosynthesis of alkaloids under such
conditions [57]. Activation of rate limiting
enzymes involved in biosynthetic pathway of
tropane alkaloids such as putrescine N-
methyltransferase and hyoscyamine 6p-
hydroxylase, are expected to be affected as a
result of exposure to nanoscale materials,
suggesting the metabolic adaptation of
exposed plants in response to the negative
impacts induced by these nanoscale particles.
However, there is no or little evidence
available about reversibility and adaptation
approaches to nanotoxicity in exposed plants,
which are still controversial issues and warrant
further researches. Elicitation of secondary
metabolites in some of the plant species upon
exposure to nanoparticles is given in Table 1.
The toxicity of silver nanoparticles
(AgNPs) has been attributed to different

Y
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mechanisms including production of Ag* ions
and generation of ROS, eliciting defense
responses of plant cells in different ways such
as improvement of secondary metabolite
biosynthesis [19]. This hypothesis was
evaluated by Jamshidi and Ghanati [58]
through assessment of taxanes production
using suspension-cultured hazel (Corylus
avellana L.) cells exposed to AgNPs. The
cultures were exposed to AgNPs (0, 2.5, 5,
and10 ppm), during the logarithmic growth
phase (d7) of cells and were harvested after 1
weak. The membrane stability and growth of
cells decreased, but extracellular electro
conductivity and total dissolved solids
increased following exposure to AgNPs
mainly due to membrane disruption. Treatment
of hazel cells with AgNPs (in particular of 5
ppm) rapidly and remarkably increased the
yields of two major taxanes, i.e., taxol and
baccatin 111; so that 24 h of the treatment their
contents reached to 378% and 163% of the
control, respectively. Increase of taxanes was
accompanied by the increase of total soluble
phenols [58].

Phenylpropanoids and terpenoids

In a study by Amuamuha et al. (2012), the
effect of varying concentrations and time of
nanoiron foliar application was investigated on
the essential oil of pot marigold. Four
concentrations (0, 1, 2, and 3 g L) of iron
NPs were used for spraying at different stages
(foliar application at stem initialize, flowering,
and after the first and second harvest) [59].
Significant influence of spraying time (growth
stage) on the essential oil percent was
observed at the first harvest and the essential

... Nano-Elicitation of

oil yield at the third harvest. Similarly,
nanoiron concentrations showed significant
effect on the yield of essential oil at the first
harvest. The highest percentage (1.573%) of
essential oil was reported when nanoiron was
applied at the early stage (stem initialized) led
to the maximum vyield of essential oil (2.397
kg ha) in the flower. The lowest essential oil
percentage (0.981%) was recorded when
nanoiron was applied at later stages (after the
second harvest).

It has been acknowledged that nanosilver
particles act as a novel and effective elicitor in
plant biotechnology for the production of plant
secondary metabolites [19]. Exposure of Ag-
SiO2  core-shell  nanoparticles  (AgNPs)
enhanced artemisinin content in the hairy root
culture of Artemisia annua. Recent
investigations have reported the potential of
lipid nanoparticles for parenteral delivery and
the augmentation of antimalarial potential of
artemether, a derivative of artemisinin [16,
60]. Influence of nanocobalt on the expression
level of involved genes and content in
Artemisia was examined [23]. Nanocobalt
particles were used for the elicitation of
artemisinin in the cell suspension culture of
A. annua qRT-PCR and HPLC were used for
quantification of the expression levels of SQS
and DBR2 genes and artemisinin content in
cell suspension culture, respectively. For this
purpose, different concentrations (0.25, 2.5,
and 5 mg L™?) of nanocobalt particles were
used and samples were analyzed after 8, 24,
48, and 72 h. The maximum increase (2.25-
fold, i.e., 113.35 mg g* dw as compared to
control) in artemisinin content was recorded
when cells were exposed to 5 mg L*
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nanocobalt for 24 h. At the same time,
suppressed expression of SQS and DBR2
genes was observed. This decline in the
expression of SQS and DBR2 genes might be
the cause of enhanced production of
artemisinin content by high concentrations of
the nanocobalt particles. The mechanism of
the impact of nanocobalt on enhancing
artemisinin content will be unstated with the
expression analysis of all genes involved in
artemisinin production [23]. However, to
increase the production of a metabolite,
enhancing the expression of particular one
gene is not sufficient.

Yarizade and Hosseini (2015) examined the
effect of nanocobalt and nanozinc (0, 0.25, 0.5,
and 1 mg L) on the expression levels of ADS,
DBR2, ALDH1, and SQS genes at 8, 24, 48,
and 72 h after treatment in the hairy root
culture of A. vulgaris. It has been reported that
application of 0.25 mg L™ cobalt nanoparticles
caused the maximum expression for all genes
under investigation, whereas nanozinc (1.0 mg
L) particles caused the maximum gene
expression. Potential application of nanozinc
and nanocobalt oxide as elicitor to increase
artemisinin production in biological systems
such as hairy roots was suggested. Nanocobalt
was recommended as the better elicitor
compared to nanozinc, since concurrent to the
increase in  the ADS  upregulation;
subsequently, it down regulates its antagonist,
the SQS gene [25]. Baldi and Dixit (2008)
stated a slight increase in the artemisinin
content of artemisia cell suspension upon the
addition of yeast extract [61]. This increase
was credited to the presence of metal ions Co?*
and Zn®**. More researches are required to
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understand the exact mechanisms of cell
elicitation of secondary metabolites in
response to nanoparticles treatment [11, 12].
Bahreini et al. (2015) analyzed the
phytoconstituents of in vitro grown fennel
plantlets in normal and nanoelicited (TiO2 and
SiO2) conditions [62]. A significant difference
was observed among the metabolites of normal
and elicited conditions. The major components
of normal plant were anethole, fenchone and
limonene and decane. Some identified
constituents of TiOz-elicited plant extract were
dodecane, phytol, and phenol 2,4 bis (1,1
dimethyl ethyl), and the most frequent
compound was octane. In plants elicited with
SiO2, benzoic acid, jasmonic acid, and
hexadecanoic acid were detected as elicited
plant components and the major compound
was pyrrolidinone. Some of other accumulated
metabolites, which appeared by elicitor
inductions such as phytol and benzoic acid,
can be used as pharmaceutical and industrial
precursors [62]. Aromatic constituents are
derived from phenylpropane hydrocarbons.
The major identified components of fennel oil
are phenyl propanoids and terpenoids. One of
the major compounds of fennel volatile oil is
trans-anethole, the amount of which is the
major governing factor for the quality of
fennel volatile oil [63, 64, 65]. Similarly,
Zhang et al. (2013) showed that AgNPs
considerably enhanced the production of
artemisinin (a sesquiterpene lactone) in A.
annua hairy root culture. Up to now, very little
study has been performed to determine the
impacts of nanoparticles on essential oil
production of exposed plants [19]. However,
Ghorbanpour  (2015) reported enhanced


http://dx.doi.org/10.29252/jmp.3.71.6
https://dor.isc.ac/dor/20.1001.1.2717204.2019.18.71.3.8
http://jmp.ir/article-1-2663-fa.html

[ Downloaded from jmp.ir on 2026-02-14 ]

[ DOR: 20.1001.1.2717204.2019.18.71.3.8 ]

[ DOI: 10.29252/jmp.3.71.6 ]

essential oil content (%) and yield (g/plant) of
Salvia officinalis upon exposure to employed
concentrations of TiO2NPs. Specifically, at
moderate concentration (200 mg/L), TiO2NPs
caused the highest essential oil content and
yield, 1.75 and 2.74-folds higher than those of
untreated controls, respectively. Also, two
major composition of the essential oils, cis-
thujene and 1,8-cineol, were peaked in plants
exposed to 200 mg/L TiO2NPs. The same
author suggested that enhanced plant biomass
and biosynthesis of certain types of terpenes
following exposure to TiO2NPs directly
increased essential oil yield per plant [24].
Aghajani et al. (2013) reported the impacts
of AgNPs (~ 32 nm) exposure (3 hours at 20,
40, 60, 80 and 100 ppm) on production of
essential oils in Thymus kotschyanus in a pot
experiment. Upon exposure, minor
components of essential oils were not
significantly changed with experimental
treatments. However, major compounds of
essential oils such as a-terpinyl acetate were
increased at the 60 ppm exposure.
Furthermore, thymol content was more than
twice of carvacrol at all employed
concentrations of AgNPs except at 100 ppm
[66]. Similarly, Zhang et al. (2013) reported an
increase  in artemisinin  content  of
Artemisiaannua hairy root culture after 3 days
of exposure to 900 mg/L AgNPs [19].
According to the existing literature, few
studies have been performed on the co-
exposure of nanoparticles and other chemicals
on plant metabolism, and the synergistic or
antagonistic interactions between them are not
well known. In a study, Ghorbanpour and
Hatami investigated the effects of different
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concentrations (20, 40 and 80 mg/L) of AgNPs
(5-35 nm) and thidiazuron (TDZ: 0, 50, 75 and
100 pM) and their combinations on
bioaccumulation of essential oil constituents in
geranium (Pelargonium graveolens) plants
[67]. Application of AgNPs and TDZ caused
significant changes in the essential oil quantity
and quality. The highest content of essential
oils and maximum values of major essential
oil constituents, citronellol (C) and geraniol
(G), were observed upon co-exposure to
AgNPsgy + TDZigo. However, AgNPsip +
TDZ7s co-exposure exhibited C/G ratio equal
to one, indicating the positive synergistic
interactions upon AgNPs and TDZ co-
exposure on quality of essential oils. It is
necessary to mention that essential oil with
C/G ratio equivalent to one possesses a good
odor and fragrance, therefore, favored by
different industries such as perfumery,
pharmaceutical, food, and cosmetic [68, 69].
The authors suggested a dose-dependent
increased generation of H2O. with application
of AgNPs and/or TDZ, which subsequently
play a vital role in accumulation of secondary
metabolites.  Essential oil yield was
significantly  positively  correlated  with
photosynthetic pigments such as chlorophyll
and carotenoids.  Subsequently,  higher
chlorophyll concentrations coupled with an
increase in photosynthesis rate, leading to
boost primary metabolites (e.g. carbohydrates)
levels. Carbohydrates metabolism include
complex biochemical pathways responsible for
triggering secondary metabolism in
P. graveolens plant [70]. The authors
concluded that co-exposure of nanomaterials
(e.g. Ag NPs) with plant growth regulators

<3
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(e.g. TDZ) at appropriate concentrations could
be a promising technique in the field of plant
metabolic engineering.

Flavonoids and phenolics

Phenolics and flavonoids constituents are
biologically, pharmaceutically and
economically valuable compounds that are
synthesized through the shikimate-
phenylpropanoids-flavonoids  pathway in
terrestrial higher plants. These metabolites
exhibit free radical (ROS) scavenging
activities and protective role against oxidative
damage caused by elicitors mostly due to their
redox characteristics [71].

Raei et al. (2014) studied the effects of
different abiotic elicitors including nano-Ag,
nano-TiO2, NHsNOsz, and sucrose on cell
suspension culture of Aloe vera. This plant
contains various secondary metabolites, and
the most important of them is aloin (an
anthraquinone), which displays antimicrobial
activity against some bacteria and fungi, and
possesses healing ability of skin burns, ulcer,
and cutaneous injuries [72, 73]. The induced
calli of A. vera by aforesaid elicitors was
collected at five intervals (6, 24, 48, 72, and
168 h). Enhanced production of aloin was
observed in 48 h after elicitation with AgNPs,
but this level was gradually reduced with time
and reached the control level. This reduction
might be related to the feedback of aloin on
the gene expression, and increased production
of aloin is the reason for down-regulation of
gene expression [22]. Titanium dioxide (TiOy)
nanoparticles could increase the aloin content
in 48 h after elicitation but declined to a lower
level, 8.8%, than the control. The reduction
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may be due to the toxic effect of nano-TiO: in
the culture medium or on gene expression.
However, both (nano-Ag and TiO.) of the
nanoelicitors enhanced the aloin content 48 h
after treatment but after that reduced
gradually. Krishnaraj et al. (2012) studied the
effect of biologically synthesized (biogenic)
AgNPs on metabolism of Bacopa monnieri
(Linn.) (Brahmi). Total phenol content was
assayed in different parts of the plants grown
in hydroponic solution, and improved total
phenol content was reported in plants exposed
to AgNPs. Results showed that treatment with
biogenic Ag NPs exerted a slight stress
condition on the growth and metabolism of B.
monnieri, and therefore, increased phenol
content is one of the mechanisms to mimic
mild stress condition [74]. Enhancement of
polyketides from Hypericum perforatum is
widely wused to treat mild-to-moderate
depression [75, 76]. Hypericin and hyperforin
are  naphthodianthrones and prenylated
acylphloroglucinols,  respectively, placed
under polyketides. Several elicitors for the
production of hypericin and hyperforin in cell
cultures of H. perforatum have been studied.
Iron- and zinc-nano oxides were used as
elicitors for the first time by Sharafi et al.
(2013). Different concentrations of zinc- and
iron-nano oxides (0, 50, 100, and 150 ppb)
were used for the treatment, and samples were
analyzed after 72 h. It has been reported that
zinc- and iron-nano oxides (at 100 ppb)
augmented the hypericin and hyperforin
production in cell suspension culture of
H. perforatum [18]. In the cultures
supplemented with zinc oxide nanoparticles,
the hypericin and hyperforin content reached
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to the maximum (7.87 and 217.45 pg gt dry
weight, respectively), which were 3- and 13-
folds higher than those of control. The amount
of hypericin and hyperforin was increased
from 2.07 and 16.27 pg g* dry weight to 11.18
and 195.62 ug g' dry weight in cultures
exposed to iron-nano oxide. The cell cultures
treated with zinc- and iron- oxide
nanoparticles showed enhanced hyperforin
content as compared to the hypericin
production. It can be suggested that
nanoparticles can be appropriate candidates for
elicitation of in vitro secondary metabolite
production. Jasmonate, an important stress
hormone, triggered various plant defense
responses, along with the biosynthesis of
defensive  secondary  metabolites  [77].
Nanoparticles may play an important role in
regulating the expression of genes for
jasmonate production in treated cells. Induced
jasmonate production may be responsible for
enhanced production of hypericin and
hyperforin. Studies on the uptake mechanism,
transportation, and  binding  sites  of
nanoparticles in plant cells are required to
elucidate the elicitation mechanism of these
in vitro applied nanoparticles for the
enhancement of secondary  metabolite
production. However, higher concentrations of
zinc- and iron-nano oxides (150 ppb) showed
adverse effects on hypericin and hyperforin
production [18].

Enhancement of flavonoids and
isoflavonoids are the most popular groups of
secondary metabolites found in plants. Many
legume seeds have been reported to be rich
sources of these secondary metabolites [78].
AL-Oubaidi and Kasid (2015) demonstrated
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the increased production of secondary
metabolite (phenolic and flavonoid
compounds) in gram on exposure to TiO2NPs
under in vitro condition. Secondary metabolite
contents in the callus were estimated
qualitatively and quantitatively using HPLC
and compared with the mother plant. TiO2NPs
at varying concentrations (0.5, 1.5, 3, 4.5, 6)
mg L' were used for an effective increase in
secondary metabolites [79]. The results
revealed that the secondary metabolite
concentration from callus embryo of gram
increased to highly significant level at the
concentrations of 4.5 and 6.0 mg L'. The
HPLC outcomes confirmed the elevation in the
secondary metabolite level under the effect of
the TiO2NPs when compared with the mother
plant. In a very recent report, Khan et al.
(2016) examined the effect of nine types of
metal NPs including monometallic and
bimetallic alloy nanoparticles [Ag, Au, Cu,
AgCu (1:3), AgCu (3:1), AuCu (1:3), AuCu
(3:1), AgAu (1:3), AgAu (3:1)] on total
phenolic and flavonoid contents in milk thistle
plant. The sterilized seeds were soaked in NPs
suspensions for 2 h and allowed to grow under
in vitro condition [80]. The experiment was
conducted for 6 weeks, and samples for total
phenolic and flavonoid contents were collected
on weekly interval. Nanomaterials suspensions
affected total phenolic and flavonoid contents
in the plant in a different way. It was observed
that the amount of phenolics and flavonoids
did not show any correlation with the total dry
mass of the plant. However, duration of the
experiment significantly affected the amount
of total flavonoids and phenolics in milk
thistle. After 21 days presoaking of seeds in

Y


http://dx.doi.org/10.29252/jmp.3.71.6
https://dor.isc.ac/dor/20.1001.1.2717204.2019.18.71.3.8
http://jmp.ir/article-1-2663-fa.html

[ Downloaded from jmp.ir on 2026-02-14 ]

[ DOR: 20.1001.1.2717204.2019.18.71.3.8 ]

[ DOI: 10.29252/jmp.3.71.6 ]

Hatami & et al.

bimetallic alloy, enhanced whereas
monometallic ~ nanoparticles  suspensions,
reduced phenolics and flavonoids content in
milk thistle plantlets. After 28 days, Au and
Cu nanoparticles caused maximum total
phenolic and flavonoid accumulation in milk
thistle plants. Therefore, maximum effect on
secondary metabolites was recorded with
monomatellic nanoparticles. Mainly three
factors (size, surface area, and composition of
nanoparticles) played a significant role either
singly or in combination.

Recently, the effects of multi-walled carbon
nanotubes (MWCNTS, 5-15 nm) were studied
on callus induction and biosynthesis of
secondary metabolites in Satureja
khuzestanica grown in vitro [81]. In the
Gamborg's B-5 (B5) medium, various
MWCNTSs concentrations (0, 25, 50, 100, 250
and 500 pg/mL) were used. The authors
reported enhanced total flavonoids content of
callus extracts upon exposure to all
concentrations. However, total phenolics
content began to increase at lower MWCNTS
exposure levels. After 15 days of exposure at
100 pg/mL both total flavonoids and phenolics
contents were peaked by 2.6 and 1.9 folds,
respectively, as compared to control.
Moreover, 100 pg/mL MWCNTs exposure
significantly enhanced two main phenolic
acids (rosmarinic acid and caffeic acid)
contents compared to other treatments.

In another study, Ghorbanpour (2015)
evaluated the influence of TiO>NPs on a
medicinal plant Salvia officinalis. The plants
were foliar sprayed with various doses of
TiO2NPs (0, 10, 50, 100, 200 and 1000 mg/L).
Upon exposure, TiO2 NPs significantly
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improved total leaf phenolics and flavonoids
contents of the plant compared to control.
However, the extract yield (% w/w) was not
significantly changed between employed
treatments [24]. Similarly, Oloumi et al.
(2015) showed that in agar growth medium
containing Hoagland nutrient solution, 1 and
10 pM CuO and ZnO nano particles exposure
on Glycyrrhiza glabra seedlings enhanced the
phenolic compounds and glycyrrhizin content
as compared to their bulk counterpart [82].
There have been many other reports of plant
phenolics [83] and flavonoids [84] production
upon abiotic elicitors exposure. The reports on
the extract yields following exposure to
TiO2NPs in Salvia officinalis are to some
extent ambiguous, possibly because of the fact
that extraction yield of plant raw materials
depends on different methodological factors
such as extraction solvent type (methanol,
ethanol, acetone and water) and extraction
time and so on [85]. It has been reported that
the leaf extract of S. officinalis plant exposed
to TiO2 NPs at 200 mg/L showed strong
antioxidant activity (lower 1Cso value), when
compared to untreated controls and BHT [24].
A positive relationship exists between
phenolic and flavonoid compounds and
antioxidant activity potential.  Therefore,
phenolics protect plants against oxidative
damage by reducing ROS toxicity on cellular
components [86, 87].

Gum, resin, and saponin

Significant enhancement in the gum content
and its viscosity was reported in cluster bean
seeds when the leaf of plant was foliar-sprayed
with ZnONPs at 10 mg L™ [88]. Increased
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growth traits and gum content might be due to
adsorption of nanoparticles on plant surface
and taken up by the plants via natural nano or
microscale openings and or stomata [88]. The
effects of AgNPs and methyl jasmonate
(MeJA) on secondary metabolites of marigold
were studied [20]. The authors reported that
plants exposed to AgNPs showed decreased
chlorophyll and carotenoid contents by 30-
50%, while MeJA treated plants increased
both of these contents, whereas when plants
were treated with 0.4 mM SNPs and 100 uM
MeJA, saponin content in the plants improved
up to 177%. Significant decrease in the
viability of HelLa cells was noted when
exposed to the extracts of marigold, and this
reduction was more evident in the plants
exposed to MeJA and AgNPs. Kole et al.
(2013) observed varied impacts of seed
treatment with five doses of fullerol on the
content of five phytomedicines in bitter melon
fruits. The contents of two anticancer
phytomedicines, namely cucurbitacin B and
lycopene, were increased by 74 and 82%, at
9.88 and 47.2 nM fullerol treatments,
respectively.  Antidiabetic phytomedicines,
charantin, and insulin contents were improved
by 20 and 91%, when the seeds were treated
with 4.72 and 9.88 nM fullerol, respectively
[89].

Several strategies have been carried out to
enhance the yields of secondary metabolites
also known as natural products or
phytochemicals in medicinal plants. Only few
studies reported the improvement of secondary
metabolites on treatment with nanomaterials
under in vivo condition, whereas the effects of
different nanomaterials have been reported on

... Nano-Elicitation of

plant growth and metabolic function [90, 74].
The same concentration of individual
nanomaterials may cause effects in diverse
directions and ranges on different variables.
Therefore, selection of the best concentration
of nanoparticles is essential for identifying
higher benefits for a target agro-economic
trait.

involved in
secondary

Potential mechanisms
elicitation of plant
metabolism by nanomaterials

The direct biophysical and/or biochemical
interactions at the nanoparticles-biological
interfaces/systems are not yet widely known.
However, it has been suggested that
carbonaceous nanomaterials adsorb on cell
surfaces mainly  through  hydrophobic,
electrostatic, receptor-ligand and hydrogen
bonding interactions [34]. Carbon-based
nanomaterials also form envelop at the surface
of cells and make clusters with filamentous
structures and enter the plant cell wall [91],
leading to changes in metabolic processes.
Exposure of plant cell culture to elicitors
induces transduction cascades, resulting in
expression of different genes encoding
enzymes involved in activation of secondary
metabolites biosynthesis [91].

Ghorbanpour and Hadian (2015) noted that
changes in biosynthesis of secondary
metabolites upon MWCNTSs exposure could be
related to specific activities of different
enzymes such as phenylalanine ammonia lyase
(PAL), peroxidase (POD) and polyphenol
oxidase (PPO). They found that enhanced
biosynthesis and accumulation of total
phenolics upon exposure to MWCNTS (at 100
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and 250 pg/mL) was positively correlated to
PAL activity [81]. Similarly, an increase in PAL
activity has been reported to be coupled with
production of total phenolics in in vitro culture
[92]. Khodakovskaya et al. (2011) reported that
carbon-based nanomaterials may up-regulate
multiple genes involved in stress signaling
cascades and trigger a molecular pattern that is
similar to plant response against biotic stresses
such as insects, herbivores or pathogens attack
[93]. A schematic model for nanomaterials
exposure-induced biosynthesis of secondary
metabolites is presented in Figure 4.

Overproduction of ROS including
superoxide (O%), hydroxyl radical (OH") and
hydrogen peroxide (H202) in plant cells
following exposure to nanomaterials can be
another possible mechanism for increasing the
production of secondary metabolites. The
rapid and extra generation of H2O, which is
known as oxidative burst regulates enzymatic
and non-enzymatic antioxidant defense
systems in plants in response to various biotic
and abiotic stresses [94].

According to Jabs et al (1997), generation
of H202 may change redox status of the plant
cells, and act as a signaling molecule for
triggering biosynthesis pathways of secondary
metabolites [95]. The content of several types
of secondary metabolites such as phenolics,
flavonoids, rosmarinic acid and caffeic acid
were shown to rise following the increased
H>O. level caused by application of high
concentrations of MWCNTSs [81]. A regulation
of anthraquinone biosynthesis was observed
with increasing H20: content in cell
suspension culture of Morinda elliptica [96].
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Likewise, Zhang et al. (2013) reported
enhancement of artemisinin biosynthesis from
treatment with Ag NPs that significantly
correlated to the overproduction of free
radicals (ROS) [19].

Although the aforesaid reports indicate that
nanoparticles are interacting with different
signaling cascades and able to modulate plant
secondary metabolism, the exact mechanism
through which this modulation could take
place is not yet well known. It has been
established that the initial responses of plants
exposed to nanoparticles might include
increased levels of ROS, cytoplasmic CaC
and activation of mitogen-activated protein
kinase (MAPK) cascades the same as
biotic/abiotic stresses (Figure 6) due to the
following reasons.

It has been reported that recognition of Ag
NPs by plasma membrane bound receptors in
A. thaliana triggered Ca;C burst and ROS
induction [98]. The levels of Ca,C and related
signaling pathway proteins were up-regulated
in O. sativa roots treated with Ag NP in a
proteomic analysis [99]. It has been
hypothesized that Ag NPs, or their released
ions, prevent cell metabolism following
binding to CaxC receptors, Ca>C channels,
CaC/NaC ATPases of plasma membrane [99].
As sensed by Ca?*-binding proteins or other
NP-specific proteins, NPs either mimic Ca.C
or act as signaling molecules in the cytosol
[100]. MAPK phosphorylation events and
activation of downstream transcription factors
mainly caused to the transcriptional
reprogramming of secondary metabolism in
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Figure 6- The possible mechanisms involved in plant cell elicitation of secondary metabolites exposed to
nanoparticle (NP). NPs may induce generation of reactive oxygen species (ROS) through interaction with cells both on the
cell surface and/or within cells. Cellular signaling machineries such as calcium spikes, antioxidant systems and mitogen-
activated protein kinase (MAPK) cascades, etc., trigger extensive transcriptional reprogramming of gene expression involved
in secondary metabolism [97].

plant cells [101-103]. Until the present time,
no direct evidence is available regarding
involvement of MAPK pathways in plant-NPs
interactions; however, animal and human cell
line researches showed that similar pathways
are involved in Ag NP-induced signaling [104,
105]. Therefore, it has been presumed that
plants may also utilize MAPK cascade
following exposure to Ag NPs [106].

Conclusions and future perspectives

Manufactured nanomaterials (with a size
ranging 1-100 nm in at least one dimension)
have acquired significant interest and concern
in recent years, and produced for various
applications such as medicine, chemistry,
biology, electronics, environment, textiles,
energy storage, food science and plant
production/protection.

Plants are a rich source of various natural
bioactive secondary metabolites, which play as
phytoalexins/and or phytoanticipins in the
survival of plants in their respective
environments from different types of biotic
and abiotic stresses [107]. The interaction
between plant cells and manufactured
nanomaterials is very complex and depends on
both  nanomaterial  characteristics  (e.g.,
concentration, size, shape, surface features,
and crystal chemistry) and plant traits (e.g.,
genotype and age) as well as time and route of
exposure, etc. From the systematic review of
published literature, it can be concluded that
exposure to manufactured nanoscale materials
has the potential to change the plant secondary
metabolism. The content of secondary
metabolites in plant cell was remarkably
improved by optimizing the composition of the
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culture medium, incorporation of precursors
and elicitors and providing suitable culture
conditions. nanoparticles supplemented to the
plant culture medium may act as a nutrient
source and an elicitor. Besides, they also serve
as physical and chemical barriers to abiotic
stressors and as potential antioxidants to
scavenge ROS [108, 109]. Furthermore, the
presence  of  nanomaterials in  the
environmental matrices substantially affect the
pharmacological characteristics of medicinal
and aromatic plants, as many phytomedicines
exert their beneficial impacts via additive or
synergistic roles of many compounds acting on
single- and multi-target sites related to the
physiological process [110]. Nanomaterial-
mediated changes in plant secondary
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