year 19, Issue 74 (6-2020)                   J. Med. Plants 2020, 19(74): 277-294 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dadkhah A, Fatemi F, Mohammadi Malayeri M R, Karvin Ashtiani M H, Mosavi Z, Naij S et al . The anti-inflammatory and antioxidant effects of Rosa damascena Mill. essential oil on the lung injury in the CLP model. J. Med. Plants 2020; 19 (74) :277-294
URL: http://jmp.ir/article-1-2402-en.html
1- Department of Medicine, Faculty of Medicine, Qom Branch, Islamic Azad University, Qom, Iran , dadkhah_bio@yahoo.com
2- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
3- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
4- Department of biology, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, Iran
5- Department of Biochemistry, Faculty of Sciences, Payame-e-Noor University, Tehran, Iran
6- Faculty of Botany, Payam Noor University, Tehran, Iran
7- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
Abstract:   (3290 Views)
Background: Sepsis or infection is the second leading cause of death in people who are intensive care units. Due to the side effects of NSAIDs drugs, the use of medicinal plants with anti-inflammatory such as Rosa (R.) damascene Mill. for treating and reducing the symptoms of the inflammation has been suggested. Objective: The current study aimed to evaluate the anti-inflammatory and antioxodant activities of Rosa (R.) damascena Mill. essential oils in the lung tissue of the septic rats induced by the experimental cecal ligation and puncture (CLP) rat model. Methods: The rats were divided into 5 groups: negative control group, positive control group and treatment groups with R. damascena Mill. essential oils and indomethacin. After 24h of CLP surgery, the oxidative parameters were measured. Results: The induction of sepsis reduced the levels of glutathione (GSH), ferric reducing antioxidant power (FRAP) as well as increased the levels lipid peroxidation (LP), myeloperoxidase (MPO), prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2), but it had no effects on glutathione S-transferase (GST). However, the treatments of rats with R. damascena Mill. essential oils have diminished the levels of biochemical parameters. Histopathological studies also demonstrated that the induction of sepsis resulted in the lung tissue damages, while these were improved by the treatment of rats with R. damascena Mill. essential oils. Conclusion: The oxidative damages of the lung tissue were induced by the sepsis and the administartionof R. damascena Mill. essential oils can be effecient in the prevention and improvement of the injuries.
Full-Text [PDF 1082 kb]   (1014 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2018/12/25 | Accepted: 2019/05/11 | Published: 2020/07/21

References
1. Derek C, Angus MPH and van der Poll T. Severe sepsis and septic shock. N. Engl. J. Med. 2013; 369: 840-51. [DOI:10.1056/NEJMra1208623]
2. Sharma R and Vijayakumar M. Procalcitonin for improved assessment and an answer to sepsis dilemma in critically ill-a myth, a hype, or a reality? Nitte Univ. J. Health Sci. 2014; 4: 57-65.
3. Vincent JL, Marshall JC, Namendys-Silva SA, Francois B, Martin-Loeches I, Lipman J, Reinhart K, Antonelli M, Pickkers P, Njimi H, Jimenez E and Sakr Y. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir. Med. 2014; 2: 380-6. [DOI:10.1016/S2213-2600(14)70061-X]
4. Gaieski DF, Edwards JM, Kallan MJ and Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit. Care Med. 2013; 41: 1167-74. [DOI:10.1097/CCM.0b013e31827c09f8]
5. Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa SH, Stepien D, Valentine C and Remick DG. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol. Rev. 2013; 93: 1247-88. [DOI:10.1152/physrev.00037.2012]
6. Dejager L, Pinheiro I, Dejonckheere E and Libert C. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011; 19 (4): 198-208. [DOI:10.1016/j.tim.2011.01.001]
7. Strong VEM, Mackrell PJ, Concannon EM, Naama HA, Schaefer PA, Shaftan GW, Stapleton PP and Daly JM. Blocking prostaglandin E2 after trauma attenuates pro-inflammatory cytokines and improves survival. Shock. 2000; 14: 374-9. [DOI:10.1097/00024382-200014030-00023]
8. Ritter C, Andrades M, FrotaJúnior ML, Bonatto F, Pinho RA, Polydoro M, Klamt F, Cleovaldo TS, Pinheiro CTS, Sérgio S, Menna-Barreto SS and José Cláudio F. Moreira JCF, Dal-Pizzol F. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med. 2003; 29: 1782-9. [DOI:10.1007/s00134-003-1789-9]
9. Koksal GM, Sayilgan C, Aydin S, Oz H and Uzun H. Correlation of plasma and tissue oxidative stresses in intra-abdominal sepsis. J. Surg. Res. 2004; 122 (2): 180-3. [DOI:10.1016/j.jss.2004.07.246]
10. Lowes DA, Webster NR, Murphy MP and Galley HF. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. BJA. 2013; 110 (3): 472-80. [DOI:10.1093/bja/aes577]
11. Dini S, Fatemi F, Rezaei MB, Dadkhah A, Dabbagh R. Considering the effect of gamma irradiation on chemical compositions and antioxidant activity of cumin seeds (Cuminum cyminum L.) essential oils. Applied Biology 2012; 2: 11-23.
12. Fatemi F, Dadkhah A, Rezaei M.B., Dini S. Effect of γ-irradiation on the chemical composition and antioxidant properties of cumin extracts. Food Biochem. 2013; 37(4): 432-439. [DOI:10.1111/j.1745-4514.2011.00641.x]
13. Dini S, Dadkhah A, Fatemi F. Biological properties of Iranian Zataria multiflora essential oils: a comparative approach. eJBio. 2015; 11 (3): 57-62.
14. Fatemi F, Dini S, Rezaei MB, Dadkhahd A, Dabbagh R, Naij S. The effect of γ-irradiation on the chemical composition and antioxidant activities of peppermint essential oil and extract. J. Essent. Oil Res. 2014; 26 (2): 97-104. [DOI:10.1080/10412905.2013.871670]
15. Dadkhah A, Khalaj GH, Fatemi F, Dini S, Hesaraki S, Naij S, Babbaei M, Attaran HR. The study of the role of barijeh (Ferula gummosa Boiss.) against hepatotoxicity induced by acetaminophen in the animal model. J. Med. Plants 2016; 15 (4): 14-23.
16. Roshanaei K, Dadkhah A, Fatemi F, Dini S. Heracleum persicum e oil administration in CCL4 treated rat sustains antioxidant / oxidative stress statue. Advances in Bioresearch. 2017; 8: 93-101.
17. Attaran HR, Dini S, Fatemi F, Hesaraki S, Parhizkarie M, Dadkhaha A. Hepatoprotective evaluation of Iranian Satureja Rechingeri essential oils against oxidative injuries induced by acetaminophen in wistar rats. Int. J. Rev. Life. Sci. 2015; 5(5): 204-210.
18. Dadkhah A, Fatemi F, Mohammadi Malayeri MR, Torabi, F, Sarbazi M, Dini S. Potential protective effect of pretreatment with caraway essential oil in vivo model of iron nanoparticle-induced liver injury. JMPB. 2018; 2: 145-152.
19. Dadkhah A, Khalaj Gh, Fatemi F, Dini S, Naij S, Fadaee Monfared M. Considering the effect of Golpar (Heracleum persicum) essential oils on the acute hepatotoxcity induced by acetaminophen in wistar rats. Journal of Animal Research. 2016; 29 (3): 292-306.
20. Roshanaei K, Dadkhah A, Fatemi, F and Dini S. The protective effects of Iranian golpar (Heracleum persicum) essential oil in liver damages induced by CCl4 in wistar rats. J. Med. Plants 2017; 1:110-122.
21. Hajhashemi V, Ghannadi A and Hajiloo M. Analgesic and anti-inflammatory effects of Rosa damascena hydroalcoholic extract and its essential oil in animal models. IJPR. 2010; 9: 163-8.
22. Yousefi B. Screening of Rosa damascena Mill. Landraces for flower yield and essential oil content in cold climates. Folia Hort. 2016; 28 (1): 31 40. [DOI:10.1515/fhort-2016-0005]
23. Kumar R, Sharma S, Sood S, Agnihotri VK and Singh B. Effect of diurnal variability and storage conditions on essential oil content and quality of damask rose (Rosa damascena Mill.) flowers in north western Himalayas. Sci Hortic. 2013; 154: 102-8. [DOI:10.1016/j.scienta.2013.02.002]
24. Akbari M, Kazerani HR, Kamrani A and Mohri M. A preliminary study on some potential toxic effects of Rosa damascena Mill. IJVR. 2013; 14 (3): 232-6.
25. Dadkhah A, Fatemi F, Mohammadi Malayeri MR, Karvin Ashtiyani MH, Kazemi Noureini S and Rasooli A. Considering the effect of Rosa damascena essential oil on oxidative stress and COX-2 gene expression in liver of septic rats. Turk. J. Pharm. Sci. 2019; 16 (4): 416-424. [DOI:10.4274/tjps.galenos.2018.58815]
26. Fatemi F, Golbodagh A, Hojihosseini R, Dadkhah A, Akbarzadeh K, Dini S and Mohammadi Malayeri MR. Anti-inflammatory effects of deuterium-depleted water plus Rosa damascene Mill. essential oil via cyclooxygenase-2 pathway in rats. Turk. J. Pharm. Sci. 2020, in press. [DOI:10.4274/tjps.galenos.2018.24381]
27. Achuthan CR, Babu BH and Padikkala J. Antioxidant and Hepatoprotective Effects of Rosa damascena. Pharmaceutical Biol. 2003; 41 (5): 357-61. [DOI:10.1076/phbi.41.5.357.15945]
28. Fatemi F, Allameh A, Khalafi H and Ashrafihelan J. Hepatoprotective effects of g-irradiated caraway essential oils in experimental sepsis. Appl. Radiat Isotopes. 2010a; 68: 280-5. [DOI:10.1016/j.apradiso.2009.10.052]
29. Fatemi F, Allameh A, Khalafi H, Rezaei MB and Seyhoon M. The effect of essential oils and hydroalcoholic extract of caraway seed on oxidative stress parameters in rats suffering from acute lung inflammation before and after γ-irradiation. J. Med. Aroma. Plant. 2010b; 25 (4): 441-55.
30. Fatemi F, Allameh A, Khalafi H, Rajaee R, Davoodian N and Rezaei MB. Biochemical properties of γ-irradiated caraway essential oils. J. Food Biochem. 2011; 35: 650 - 62. [DOI:10.1111/j.1745-4514.2010.00408.x]
31. Leite BL, Bonfim RR, Antoniolli AR, Thomazzi SM, Araújo AA, Blank AF, Estevam CS, Cambui EV, Bonjardim LR, Albuquerque Júnior RL and Quintans-Júnior L J. Assessment of antinociceptive, anti-inflammatory and antioxidant properties of cymbopogon winterianus leaf essential oil. Pharm. Biol. 2010; 48 (10): 1164-9. [DOI:10.3109/13880200903280000]
32. Rasooli A, Fatemi F, Hajihosseini R, Vaziri A, Akbarzadeh K, Mohammadi Malayeri MR, Dini S and Foroutanrad M. Synergistic effects of deuterium depleted water and Mentha longifolia L. essential oils on sepsis-induced liver injuries through regulation of cyclooxygenase-2. Pharmaceutical Biology 2019; 57 (1): 125-32. [DOI:10.1080/13880209.2018.1563622]
33. Yong-Hua Du, Rui-Zhang Feng, Qun Li, Qin Wei, Zhong-Qiong Yin, Li-Jun Zhou, Cui Tao, andRen-Yong Jia. Anti-inflammatory activity of leaf essential oil from cinnamomum longepaniculatum (Gamble) n. chao. Int. J. Clin. Exp. Med. 2014; 7 (12): 5612-20.
34. Wills ED. Lipid peroxide formation in microsomes: general consideration. Biochem. J. 1969; 113: 315-24. [DOI:10.1042/bj1130315]
35. Seldak J and Lindsay RH. Estimation of total protein bound and non-protein sulfidryl groups in tissue with Elman's reagent. Anal. Biochem. 1986; 25: 192-205. [DOI:10.1016/0003-2697(68)90092-4]
36. Habig WH, Pabst MJ and Jakoby WB. Glutathione s-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974; 25: 7130-9.
37. Benzie IFF and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 1996; 239: 70-6. [DOI:10.1006/abio.1996.0292]
38. Hillegass LM, Griswold DE, Brickson B and Albrightson-Winslow C. Assessment of myeloperoxidase activity in whole rat kidney. J. Pharmacol Methods 1990; 24: 285 - 95. [DOI:10.1016/0160-5402(90)90013-B]
39. Macdonald J, Galley HF and Webster NR. Oxidative stress and gene expression in sepsis. BJA. 2003; 90 (2): 221-32. [DOI:10.1093/bja/aeg034]
40. Victor VM and De La Fuente M. Immune cells redox state from mice with endotoxin-induced oxidative stress. Involvement of NF-κB. Free Radic. Res. 2003; 37 (1): 19-27. [DOI:10.1080/1071576021000038522]
41. Peralta JG, Llesuy S, Evelson P, Carreras MC, Flecha BG and Poderoso JJ. Oxidative stress in skeletal muscle during sepsis in rats. Circulatory Shock. 1993; 39 (2): 153-9.
42. Cuzzocrea S, McDonald MC, Mazzon E, Filipe HM, Lepore V, Terranova ML, Ciccolo A, Caputi AP and Thiemermann C. Beneficial effects of tempol, a membrane-permeable radical scavenger, on the multiple organ failure induced by zymosan in the rat. Crit. Care Med. 2001; 29 (1): 102-11. [DOI:10.1097/00003246-200101000-00022]
43. Alitonou GA, Avlessi F, Sohounhloue DK, Agnaniet H, Bessiere JM and Menut C. Investigations on the essential oil of Cymbopogon giganteus from Benin for its potential use as an anti-inflammatory agent. Int. J. Aromather. 2006; 16: 37-41. [DOI:10.1016/j.ijat.2006.01.001]
44. Dadkhah A and Fatemi F. Heart and kidney oxidative stress status in septic rats treated with caraway extracts. Pharmaceutical Biology 2011; 49 (7): 679-86. [DOI:10.3109/13880209.2010.539618]
45. Senol FS, Orhan IE, Kurkcuoglu M, Hassan Khan MT, Altintas A, Sener B and Can Baser KH. A mechanistic investigation on anticholinesterase and antioxidant effects of rose (Rosa damascena Mill). Food Res. Int. 2013; 53: 502-9. [DOI:10.1016/j.foodres.2013.05.031]
46. Saleh M, Clarck S, Woodard B, Deolu-Sobogun SA. Antioxidant and free radical scavenging activities of essential oils. Ethn. Dis. 2010; 20: 78-82.
47. Hsu DZ and Liu MY. Effects of sesame oil on oxidative stress after the onset of sepsis in rats. Shock. 2004a; 22 (6): 582-5. [DOI:10.1097/01.shk.0000135254.21699.45]
48. Hsu DZ, Li YH, Chien SP and Liu MY. Effects of sesame oil on oxidative stress and hepatic injury after cecal ligation and puncture in rats. Shock. 2004b; 21 (5): 466-9. [DOI:10.1097/00024382-200405000-00011]
49. Hsu DZ, Su SB, Chien SP, Chiang PJ, Li YH, Lo YJ and Liu MY. Effect of sesame oil on oxidative-stress-associated renal injury in endotoxemic rats: involvement of nitric oxide and proinflammatory cytokines. Shock. 2005; 24 (3): 276-80. [DOI:10.1097/01.shk.0000172366.73881.c7]
50. Bayir Y, Albayrak A, Can I, Karagoz Y, Cakir A, Suleyman H, Uyanik H, Yayla N, Polat B, Karakus E and Keles MS. Nigella sativa as a potential therapy for the treatment of lung injury caused by cecal ligation and puncture-induced sepsis model in rats. Cell. Mol. Biol. (Noisy-le-grand). 2012; 58 (2): 1680-7.
51. Hsu DZ, Chen KT, Chien SP, Li YH, Huang BM, Chuang YC and Liu MY. Sesame oil attenuates acute iron-induced lipid peroxidation-associated hepatic damage in mice. Shock. 2006b; 26 (6): 625-30. [DOI:10.1097/01.shk.0000232274.88354.8d]
52. Hsu DZ, Chien SP, Li YH, Chuang YC, Chang YC and Liu MY. Sesame oil attenuates hepatic lipid peroxidation by inhibiting nitric oxide and superoxide anion generation in septic rats. J. Parenter. Enteral Nutr. 2008; 32 (2): 154-9. [DOI:10.1177/0148607108314766]
53. Stark G. Functional consequences of membrane damage. J. Member Biol. 2005; 205 (1): 1-16. [DOI:10.1007/s00232-005-0753-8]
54. Podrez EA, Abu-Soud HM and Hazen SL. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic. Biol. Med. 2000; 28: 1717-25. [DOI:10.1016/S0891-5849(00)00229-X]
55. Zhang R, Brennan ML, Shen Z, Macpherson JC, Schmitt D, Cheryl Molenda Ch and Hazen SL. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. The Journal of Biological Chemistry 2002; 277: 46116-22. [DOI:10.1074/jbc.M209124200]
56. Villa P, Saccani A and Sica A. Glutathione protects mice from lethal sepsis by limiting inflammation and potentiating host defense. J. Infect. Dis. 2002; 185: 1115-20. [DOI:10.1086/340042]
57. Stolf AM, dos Reis Lı'vero F, Dreifuss AA, Bastos-Pereira AL, Fabosi IA, de Souza CEA, de Oliveira Gomes L, Chicorski R, Brandt AP, Cadena SMS, Jose' Telles EQ, Hauser AB, Elferink RO, Zampronio AR and Acco A. Effects of statins on liver cell function and inflammation in septic rats. J. Surg. Res. 2012; 178 (2): 888-97. [DOI:10.1016/j.jss.2012.08.019]
58. Kim SJ, Yoon SJ, Kim YM, Hong SW, Yeon SH, Choe KI and Lee SM. HS-23, Lonicera japonica extract, attenuates septic injury by suppressing toll-like receptor 4 signaling. J. Ethnopharmacol. 2014; 155 (1): 256-66. [DOI:10.1016/j.jep.2014.05.021]
59. Yun N, Lee CH and Lee SM. Protective effect of Aloe vera on polymicrobial sepsis in mice. FCT. 2009; 47 (6): 1341-8. [DOI:10.1016/j.fct.2009.03.013]
60. Rios CEP, Abreu AG, Braga Filho JAF, Nascimento JR, Guerra RNM, Amaral FMM, Maciel MC and Nascimento FR. Chenopodium ambrosioides L. Improves phagocytic activity and decreases bacterial growth and the systemic inflammatory response in sepsis induced by cecal ligation and puncture. Front Microbiol. 2017; 8: 148. [DOI:10.3389/fmicb.2017.00148]
61. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK and Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 2001; 480-1: 243-68. [DOI:10.1016/S0027-5107(01)00183-X]
62. Pandey M, Prakash O, Santhi WS, Soumithran CS and Pillai RM. Overexpression of COX-2 gene in oral cancer is independent of stage of disease and degree of differentiation. Int. J. Oral Maxillofac. 2008; 37: 379-83. [DOI:10.1016/j.ijom.2008.01.004]
63. Oka T. Prostaglandin E2 as a mediator of fever: the role of prostaglandin e (EP) receptors. Front Bio. Sci. 2004; 9: 3046-57. [DOI:10.2741/1458]
64. Harirforoosh S, Asghar W and Jamali F. Adverse Effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci. 2013; 16 (5): 821-47. [DOI:10.18433/J3VW2F]
65. Wang HL, Li YX, Niu YT, Zheng J, Wu J, Shi GJ, Ma L, Niu Y, Sun T, Yu JQ. Observing anti-inflammatory and anti-nociceptive activities of glycyrrhizin through regulating COX-2 and pro-inflammatory cytokines expressions in mice. Inflammation 2015; 38: 2269-78. [DOI:10.1007/s10753-015-0212-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb