The Study of Morphological Characteristics of St. John's Wort (Hypericum perforatum L.) Populations in Iran's Natural Habitats

Riazi A (Ph.D. Student)¹, Majnoun Hosseini N (Ph.D.)¹, Naghdi Badi H (Ph.D.)²*, Naghavi MR (Ph.D.)¹, Rezazadeh Sh (Ph.D.)³, Ajani Y (M.Sc.)²

- 1- Department of Agronomy and plant Breeding, Faculty of Agricultural Science & Engineering, University of Tehran, Karaj, Iran
- 2- Department of Cultivation and Development, Institute of Medicinal Plants, ACECR, Karaj, Iran
- 3- Department of Pharmacognosy & Pharmacy, Institute of Medicinal Plants, ACECR, Karaj, Iran

*Corresponding author: Iranian Academic Center for Education, Culture and Research (ACECR), Institute of Medicinal Plants, Karaj, Iran

P.O.Box: 33651/66591

Tel: +98 - 261 - 4764010 - 9, Fax: +98 - 261 - 4764021

Email: Naghdibadi@yahoo.com

Receive: 14 June 2011 Acceptance: 20 Aug. 2011

Abstract

Background: St. John's wort (*Hypericum perforatum* L.) is an important medicinal plant that has been widely used for its antidepressant properties.

Objective: In this study morphological characteristics variation of populations of *H. perforatum* were investigated.

Methods: In this study, different morphological characteristics of 25 *H. perforatum* populations in Iran's natural habitats were evaluated in 2010.

Results: The results indicated that the highest coefficients of variations were found in flowers number, the fifth internodes' length and capsule length (respectively, 93.46, 85.28 and 84.7%); however the lowest coefficients of variations were seen in flower width (11.72%) and sepal length (11.91%). The largest dimensions of flowers, sepals and petals related to the population which was gathered from Zanjan/Tarum city. The highest leaves dimensions and dark glands density on the bottom leaves were observed in Alamut and Kalaleh populations. The highest positive significant correlations were seen between flower length with flower width; dark glands density on the middle leaves surface area with dark glands density on the bottom leaves surface area; petal length with flower length and width; capsule length with capsule width; non-flowering branches number with branches number; light glands density on the middle leaves surface area with light glands density on the bottom leaves surface area. The lowest significant correlations were observed between capsule length with flower length and width. The principal components analysis showed that four components explained 68.9 % of total variance. The cluster analysis divided these populations into four clusters with no consistency in their geographical distributions.

Conclusion: In conclusion, this study indicated that there were high variations among the Iranian St. John's wort populations which can be utilized in the breeding programs.

Keywords: Hypericum perforatum L., Iran, Population, Morphological characteristics

Introduction

Hypericum is a genus of Hypericaceae or Clusiaceae family which has 17 species in Iran but only one species *H. perforatum* L. has high medicinal value. This species grows widely in the north, north-west, west and northeast Iran, particularly in Ardebil, Astara, Gorgan, Kohgiluyeh and Boyr-Ahmad, Fars provinces and in rangeland and mountain hills of Alborz [12]. This plant has a perennial habit, slow and creeping nature in the first year and flowering from the second year [13, 17, 21].

Iran's natural habitat is as inheriting source for provision and production of medicinal herbs under field conditions. There are many factors like origin, genotype, nutrient climate soil elements, and which influencing the quantity and quality of plants [11]. In this order, the previous studies were found that the altitude had significant effect on growth and the secondary metabolism of St. John's wort and flavonoid content decreased as altitude increased. Also, the amount of tannins, ascorbic acid and cartenoid differed in a narrow range [22]. Nonetheless, 1250 meters above sea level and more than 760 mm of rainfall are the best conditions for this plant in natural habitat, but it can grow at higher elevation as well. Of course, elevations more than 1500 meters above sea level and lowlands condition reduce the seedling growth due to sever cool condition and less than 500 mm rainfall respectively [11,12,22].

However, St. John's wort is an important plant because of it's worthily compounds such as hypericin, perodohypericin, porotohypericin, porotosiclohypericin and hyperforin. Hypericin is a key compound for evaluation of the quality of this plant. These compounds are available in dark glands on the leaves, stems, flowers and stamens of the plant [10, 15, 16]. Several clinical studies have

demonstrated the effectiveness of St. John's wort extracts as a phytomedicinal treatment for mild to moderate depression due to its antidepressant properties. Proven photodynamic, antiviral, antiretroviral, and antitumor activities of *Hypericum* extracts also suggest use of this plant in HIV and cancer treatments [9, 12, 19]. For this reason, this plant has been introduced into many regions of the world [5, 19]. However, on the aspect of St. John's wort morphological populations in Iran, no comprehensive assessment has been done yet. Therefore, with regard to the great dispersal of this plant in Iran, any investigation on St. John's wort morphological populations would be very helpful in optimization of the production and performance of this plant quantitatively and qualitatively. The main objectives of our research were: (1) evaluation of morphological characteristics variation populations; (2) classifying populations based on morphological traits; (3) determining the effect of geographical distributions on the morphological traits of populations; (4) determining the possible correlations between morphological traits; (5) identifying characteristics which could be suitable descriptors in future breeding programs.

Materials and Methods

Totally twenty-five populations of St. John's wort (*Hypericum perforatum* L.) were collected from different areas of Iran in the spring and summer 2010 (Figure 1). Geographical origins of twenty-five St. John's wort populations are listed in Table 1. All Plants samples were collected at flowering stage.

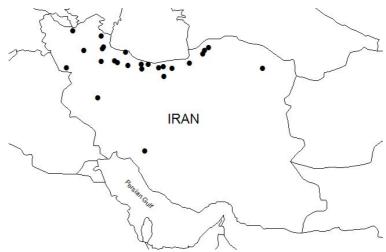


Fig. 1- The geographical origins of *H. perforatum* populations

Table 1- The geographical origins and climatic conditions of *Hypericum perforatum* L. populations

Populations		Altitude	Latitude,	Longitude,	ст A				
no.	Region originated	(m)	N	E	Climate ^A				
1	Firooz Kooh road to Gadok	1902	35°52'36. 3 "	52°57'29. 6 "	semi-arid, temperate				
2	D.1 - C.C.14- C J.1	1.47.6	36°04' 42.8 "	53°10'10. 5 "	semi-arid with hot summer				
2	Pol-e Sefid to Sangdeh	1476			and winter relatively cool				
3	between Shirgah and Zirab	322	36°15'56. 0"	52°53'40. 9 "	semi-wet with hot summer				
3	between Shingan and Zhao	322			and winter relatively cool				
4	Gorgan– Ziyarat	1188	36°40'53. 1"	54°27'54. 7"	semi-arid, temperate, hot				
5	Azadshahr to Shahrood	455	37°01'51. 3"	55°16'58. 0"	semi-arid, temperate, hot				
6	between Kalaleh and	202	37°24'50. 5"	55°29'35. 1"	semi-arid, temperate, hot				
Ü	Dahaneh village	202			semi-and, temperate, not				
7	Siahbisheh	558	36°09'43. 0"	52°21'26. 0"	semi-wet with temperate				
,	Statioisticii	338			summer and cool winter				
					semi-arid with relatively hot				
8	Asara to Karaj	1846	36°02'24. 8"	51°11'13.8"	summer and relatively cool				
					winter				
9	Jirandeh-Damash-Pakdeh	1581	36°44'00. 0"	49°47'46. 2"	semi-arid, cool, temperate				
10	Macrowave station – west	514	36°54'08. 9"	49°01'06. 9"	arid, temperate, cool				
10	Rustam Abad	<i>311</i>			una, temperate, coor				
11	Lahijan to Astaneh	20	37°12'43. 0"	50°10'10. 5"	semi-wet, temperate, cool				
12	Talesh	53	37°47'09. 4"	48°54'34. 4"	semi-wet, temperate, cool				
13	20km to Namin	966	38°23'46. 7"	48°36'15. 3"	border between dry and semi-				
13	Zokin to rumili	700			wet, temperate, cool				
14	Asalem to Khalkhal	1829	37°37'35. 1"	48°46'39. 0"	semi-wet, temperate, cool				

Downloaded from jmp.ir on 2025-09-04]

Continue Table 1- The geographical origins and climatic conditions of *Hypericum perforatum* L. populations

Populations		Altitude	Latitude,	Longitude,	A				
no.	Region originated	(m)	N	E	Climate ^A				
15	Kalardasht	2238	36°31'15. 7"	51°05'53. 9"	semi-wet, temperate, cool				
16	Noor	-3	36°34'14. 7"	51°52'54. 4"	semi-arid with hot summer and relatively cool winter				
17	Alamut-45km Qazvin	1573	36°25'12. 2"	50°15'31. 1"	semi-wet, temperate, cool				
18	Zanjan-Tarum	2119	36°52'16. 5"	48°39'12. 4"	Temperate, semi-arid				
19	Nahavand, Sarab(Gian forest)	1669	34°09'10. 5"	48°13'26. 5"	semi-wet, temperate, cool				
20	Sisakht to Mishi spring	2329	30°51'35. 9"	51°28'40. 3"	semi-wet, temperate, cool				
21	Baneh (30 km from Saghez)	1581	36°10'13. 0"	46°03'53. 3"	semi-wet, temperate, cool				
22	Asheghlo to Vaniagh	1294	38°56 02.0"	46°46'10. 7"	arid, temperate, cool				
23	Between Hashtrod and Mianeh	1861	37°25'54. 0"	47°20'20. 2"	arid, temperate, cool				
24	Chenaran, Maravetapeh	754	37°45'01. 9"	55°54'32 .3"	semi-arid, temperate, hot				
25	Dizbadolia- Neyshabur	1738	36°05' 59.4 "	59°17'14. 4"	arid, temperate, cool				

A Yearly mean temperature in warm, temperate and cool climates are 15 - 25 8C, 10 - 15 8C and 0 - 5 8C. Yearly mean, respectively. Rainfalls in semi-humid, semi-arid and arid climates are 600 - 1400 mm, 300 - 600 mm and 100 - 300 mm, respectively

To study the botany traits (microscopic and macroscopic characteristics) of St. John's wort plant, 10 plant samples of each population in each region were randomly collected. The macroscopic traits included stem height; number of branches; the smallest and largest secondary stems length; number of stem internodes; the fifth internodes' length; stem diameter; numbers of flower and non-flower branches on the main stem; the bottom and top leaves dimensions; inflorescence, sepal and petal dimensions; numbers of flowers and capsules on main stem and flower diameter before opening. Microscopic characteristics included dark and light glands density on the leaves (the bottom, middle and top leaves), dark gland density on the petal, and dark and light glands density on the leaves surface area. macroscopic The and microscopic characteristics including dark glands density

on the leaves and petal were measured at the collection sites. The other microscopic traits were examined at the laboratory.

Data were analyzed with SAS 6.12 and SPSS 16.0 software. Simple statistics (i.e. mean, maximum, minimum and coefficient of variation) were used in order to compare genetic variation in pre-planting stages. Statistical analysis included variance analysis, simple and Pearson correlation coefficient and component and cluster analysis on morphological traits. Also, the means of results were compared by Duncan's multiple range tests. The cluster analysis was shown as indicating the estimated dendrogram relations among St. John's wort populations. The dendrogram was created by UPGMA (using unweighted pair group method using arithmetic averages).

Downloaded from jmp.ir on 2025-09-04

Results

The populations of St. John's wort were significantly different in all studied parameters (p<0.05). St. John's wort populations were evaluated in respect of dark and light glands density on the leaves and dark glands density on the petal. Kalaleh population had the greatest dark glands density on the leaves i.e. 58.54, 99.9 and 93.2 glands on the top, middle and bottom leaves, respectively. The least dark glands density on the leaves was seen in Baneh population with 3.1, 14.9, 18.8 glands on the top, middle and bottom leaves, respectively. The greatest and least dark glands density on

the petal were observed in Lahijan (28.1 glands) and Nahavand (12.9)glands) populations, respectively. The greatest light glands density were recorded on the top leaves in Siahbisheh population (390.9 glands), on the middle leaves of Macrowave population (478 glands) and on the bottom leaves Chenaran population (497.7 glands). However, the least light glands density were seen on the top leaves in Pol-e Sefid population (59.2 glands) and on the middle and bottom leaves (respectively, 49.6 and 14.6 glands) in Khalkhal population (Table 2).

Table 2- Analysis of variances for the morphological traits of *H. perforatum* L. populations

Traits	15 01 v ui micc 5 10	Mean S	Ra	nge ation	Means traits			
Source variation	Coefficient of Variation (CV)%	Error	Populatio ns	Repeat	Min	Max	Min	Max
Df	-	216	24	9	-	-	-	-
Length stem	19.14	102.73	2763.25**	110.90 ^{ns}	20.3	100	29.99	85.56
Number of branches	18.17	41.64	416.22**	26.54 ^{ns}	17	62	24.9	43.2
The smallest secondary stem length	80.56	1.48	7.79 **	0.95 ^{ns}	0.1	4.8	0.68	4.51
The largest secondary stem length	67.64	36.73	164.23 [*]	21.79 ^{ns}	1.2	33	3.89	21.46
Stem diameter	30.56	0.91	5.82**	1.36 ns	1.5	7	1.85	4.8
Number of stem internodes	20.04	18.40	108.29**	5.07 ns	10	39	12.7	25.4
Number of flowering	29.28	10.52	99.40**	17.90^{*}	5	26	7.3	21.7
branches								
Number of non flowering branches	25.56	38.30	310.15*	13.55 ^{ns}	8	51	15.4	37.2
Bottom leaves length	16.29	10.23	273.46**	5.27 ns	9.5	38	10.35	31.4
Bottom leaves width	23.96	4.01	63.15**	3.18^{ns}	4	18	6.15	15.9
Top leaves length	20.47	4.14	29.94**	5.29 ns	5	13	6.95	12.9
Top leaves width	25.58	1.19	6.81**	1.11 ^{ns}	2	6	2.95	5.95
Inflorescence length	48.98	32.36	344.32**	51.92 ^{ns}	2.9	50	5.56	29.37
Inflorescence width	48.81	25.72	132.60**	11.94 ^{ns}	1.8	36.7	5.35	20.5
Flower length	11.72	0.06	1.08**	0.35^{ns}	1.4	3.3	1.64	2.61
Flower width	11.91	0.05	0.98^{**}	0.06^{ns}	1.4	3.3	1.63	2.46
Petal length	22.43	1.11	8.04**	0.085^{ns}	2	7	3.5	6.8
Petal width	33.98	0.2	0.35**	0.14^{ns}	1	3	1	1.48
Sepal length	15.81	2.58	14.3**	3.84^{ns}	5	15	8.3	12.5
Sepal width	17.98	0.81	4.25**	0.63^{ns}	2	7	4	6.5
Capsule length	31.31	2.75	21**	1.74^{ns}	2	10	1.3	8.1
Capsule width	31	0.93	7.11**	0.79^{ns}	1.5	6	0.75	4.65

[Downloaded from jmp.ir on 2025-09-04]

Continue Table 2- Analysis of variances for the morphological traits of *H. perforatum* L. populations

Traits		Mean S	quare			nge ation	Means traits		
Source variation	Coefficient of Variation (CV)%	Error	Populatio ns	Repeat	Min	Max	Min	Max	
Dark glands density on the	39.97	81.98	1938.65**	80.62 ns	1	89	3.1	59.1	
top leaves Dark glands density on the middle leaves	28.65	138.75	4025.74**	148.83 ^{ns}	6	120	14.9	99.9	
Dark glands density on the bottom leaves	29.7	110.44	2848.75**	54.76 ^{ns}	5	130	11.6	93.2	
Dark glands density on the petal	20.79	16.36	156.15**	18.77 ^{ns}	5	31	12.9	28.1	
Light glands density on the top leaves	27.99	2279.16	90839.48**	5711.88**	17	417	49.8	390.9	
Light glands density on the middle leaves	26 .23	4253.36	157798.2**	4051.8 ^{ns}	25	643	49.6	443.2	
Light glands density on the bottom leaves	34.28	3588.76	137279.47**	3645.12 ^{ns}	2	667	18.8	497.7	
Fifth internodes' length	85.28	0.8	5.24**	0.38^{ns}	0.5	4.5	1.02	3.68	
Number of capsules	84.7	509.59	7736.50**	416.59 ^{ns}	0	198	1.7	119.2	
Number of flowers	93.46	470.39	3720**	652.4 ^{ns}	1	170	7.9	99.2	
Flower diameter before opening	24.06	0.72	2.34**	0.43 ^{ns}	1	5.5	2.7	4.6	
Light glands density on the top leaves surface area	32.37	937.87	24060.29**	925.76 ^{ns}	2	302	28.4	179.9	
Light glands density on the middle leaves surface area	45.04	1186.77	20513.88**	924.11 ^{ns}	5	448	21.3	203.9	
Light glands density on the bottom leaves surface	55.27	594.31	1059.94**	425.52 ^{ns}	0	241	5.2	122.2	
area Dark glands density on the top leaves surface area	42.37	14.23	299.95**	5.12 ^{ns}	0	32	1	23.6	
Dark glands density on the middle leaves surface	48.21	10.29	202.7**	13.46 ^{ns}	1	28	2	17.2	
Dark glands density on the bottom leaves surface area	57.14	8.24	116.96**	2.05 ^{ns}	0	24	2.1	15.7	

 $^{^{\}text{ns}, * \text{ and } **:}$ not significant, p< 0.05 and p< 0.01, respectively

The highest coefficients of variations were found in flowers number, the fifth internodes' length and capsule length (respectively, 93.46, 85.28 and 84.7%); however the lowest coefficients of variations were seen in flower width (11.72%) and sepal length (11.91 %). Therefore, the studied populations of St. John's wort showed remarkable variations in flowers and capsules numbers which are

important traits in plant performances. The evaluation of St. John's wort populations revealed that the narrowest and widest leaves existed in Nahavand (with 3.96 leaf length: width ratio) and Ziyarat populations (with 1.65 leaf length: width ratio), respectively. Furthermore, the narrow-leaf populations had taller stems, larger leaves length, and greater dark and light glands density on the leaves

surface area as compared to the broad-leaf populations. However, the narrow-leaf populations had the lowest stem diameter, stem internodes number and leaves and inflorescences dimensions than those of others (Table 2).

In present study, the highest positive significant correlations were observed between flower length with flower width (0.98); dark glands density on the middle leaves with dark glands density on the bottom leaves surface area (0.95); petal length with flower length (0.9) and width (0.89); dark glands density on the middle leaves with dark glands on the top leaves (0.89); capsule length with capsule width (0.89); flowering branches number with branches number (0.88); light glands density on the middle leaves surface area with light glands density on the bottom leaves surface area (0.88). The lowest significant correlations were found between capsule length with flower length (0.013) and width (0.0001) (Table 3).

Evaluation the principal components of 39 traits in these populations indicated that four components explained 68.99% of total variance and the first three components had greater roles. The first principal component shared 30.42 % of the total variance and showed the positive coefficients for these traits such as main stem length; branches number; the largest and smallest secondary branches length: stem diameter: stem internodes number: flowering and non-flowering branches number; inflorescence length and width; dark and light glands density on the top and middle leaves; light glands density on the top, middle and bottom leaves; the fifth internodes' length; dark and light glands density on the top and bottom leaves surface area and flowers number. On the basis of this component, these traits were the most important parameters in the populations.

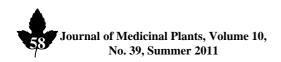
Overall, the results indicated that leaves and flowers number, leaves dimensions and dark and light glands density on the leaves increased with rising stem height, flowering branches number and secondary branches number (Table 4).

The second principal component shared 19.91% of total variance and showed the positive coefficients for some traits such as the length and width of the bottom and top leaves, sepal, petal, flower, capsule length and width. Also the negative coefficients were observed for dark glands density on the petal and middle leaves surface area. The third principal component allocated 12.09% of total variance and its coefficients were positive for sepal width and flowers diameter and negative for capsule length and capsules number. The fourth principal component only showed a positive coefficient for the secondary stem length with 6.51% of total variance. In general, the principal component analysis results indicated that capsules, flowers, top and bottom leaves were the most important parts in evaluation of St. John's wort populations (Table 4).

The cluster analysis (using UPGMA clustering procedures) on the morphological characters arranged St. John's populations into four main groups. The first group had the highest stem height, branch number, stem diameter, the largest and smallest secondary stems length, the top and bottom leaves dimensions, inflorescence dimensions, and flowers and capsules number. Of course, the least dark glands density on the petals was observed in this group. The second group had the highest capsule dimensions, dark and light glands density on the leaves surface area and dark glands density on the petal. In general, the first and second groups had greater dark and light glands density on the leaves than the other groups (Figure 2).

39 37 33 33 33 33 33 33 33 33 33 33 33 33	16 17 18 19 20 21	1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14	Populatio ns no. a
		—	1
		.712**	2
		.445* .163 1	u
		.598** .481* .656**	4
		.743** .482* .222 .298 1	U
			6
		.471* .489* .186 .260 .695**	7
		.547** .882** .089 .412* .157 .803**	∞
		.742** .443*032 .139 .668** .492* .463* .242	9
		.604** .191 .087 .165 .633** .212 .343 .017	10
		.471* .037 .044048 .532** .097 .235109 .717** .683**	П
		.334- .166 .169 .052 .402* 084 .153 281 .454* .725** .812**	12
		.655** .547** .353 .688** .656** .739** .230 .474* .475* .200 .238	13
		.476* .546** .364 .550** .376 .492* .569** .340 .334 .284 .113 .073 .627**	14

Table 3- The simple correlation (r) between values of H. perforatum L. populations for different botanical traits


Journal of Medicinal Plants, Volume 10, No. 39, Summer 2011

333333333333222222222222222222222222222	ons no. a
361 .011 139 .125 094 377 .307 .462* 000 048	3 3
394 014 158 .099 331 089 416* .274 .503* .400* .473* .002 070 .988**	212
30 30 461* 461* 432* 150 324 750** 760**	24
011 022 070 .524** 116 .396* .372 .327 .329 .260 138 .233 .241 .236	306
463**114223129350115482*470*108902**682**217	8
263 .083 .083 106 153 173 210 .088 .246 .375 427* 038 038 038 427* 038 502** 562** 562**	210
	373
	307*
314 .271 .127 .190 .330 .168 .241 .163 .145 .090 .245 .108 .300 .245 .108 .300 .245 .108 .330 .387 .387 .357 .357 .359	305
.439* .146 .123 .371 .346 .505* .229 .426* .141 .004 .403* .292 .298 .288 .288 .288 .288 .288 .288	417*
.481* .130 .324 .453* .437* .552** .552** .257 .505* .121 .602** .206 .175 .1164 .402* .185 .311 .702** .864**	۲ ۲ ۲
140 .013 .003 293 054 205 336 191 066 028 113 106 111 130 245 164 103 245 164 103 245	273
.477* .294 .241 .253 .444* .402* .335 .143033210 .385 .550**241264313 .039272 .393 .188 .067 .612** .788** .712**	301
.476* .312 .307 .465* .417* .371 .358 .567** .414* .194 .013 .458** .028 .226 .028 .227 .438* .214 .226 .028 .238 .214 .238 .214 .238 .238 .248** .214 .258 .258** .214 .258 .258** .214 .258** .214 .258 .258** .214 .258** .214 .258** .214 .258** .211 .226 .228 .228 .227 .238 .238** .214 .226 .238 .238** .211 .238 .238** .23	**
.559** .419* .517** .518** .488* .305 .491* .462* .289 .232 .008 .448* .009 .056 .485* .186 .316 .316 .332 .484* .756**	×**
.4.99* .253 .286 .746**198 .516**560**560**577 .116 .650**094064 .176 .348 .541**558**558**558**558**558**622**177 .116 .333 .545**177 .116 .176 .176 .176 .176 .176 .176	750*

38	36	သ ပ	2 5	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	7 1	14	13	: =	10	9	00	7	6	υı	4	w	2	_	ns no. "	Populatio	
					_	.208	.735**	.331	.105	198	.063	107	249	.449*	.333	.221	034	040	230	- 036	- 018	511**	7Q7**	.098	.096	.146	.252	.356	.265	.465*	.666**	.483*	.375	.451*		31	
				<u> </u>	.295	.348	.296	.302	.251	.066	.279	.234	.045	.357	.235	173	087	.094	263	- 163	- 164	*005	カ1カ**	.088	.222	.290	.037	.731**	.209	.565**	.084	032	.383	302		32	
			-	064	568**	054	376	242	100	.096	181	036	.084	507**	530**	031	.060	.029	.268	.010	.017	- 468*	_ 470*	16/	190	157	182	092	259	111	628**	348	198	304		33	7
		,	1 188	.070	.159	.146	.385	.692**	.831**	.215	.528**	.686**	.476*	037	.065	339	245	008	184	- 267	- 235	296	317	020	.115	.302	.303	.330	.448*	.209	.166	.205	.405*	.261		34	opulations
		1	**77	.080	.322	.224	.594**	.776**	.781**	.159	.481*	.605**	.480*	.180	.269	408*	282	.117	346	-306	-303	3 i 4 i	244	050	062	.094	.235	.170	.172	.186	.248	.311	.269	.235		35	for differe
	1	.881**	-:330	.094	.523**	.237	.703**	.669**	.667**	.146	.441*	.474*	.423*	.139	.237	239	383	.007	399*	336	- : :33	417*	7.2.7	000	113	.018	.380	.166	.282	.245	.526**	.568**	.407*	.386		36	populations for different botanical traits
	.414*	.501*	.144 612**	.008	231	.189	005	.392	.642**	.381	.696**	.836**	.774**	405*	291	605**	372	.152	127	306	350	.137	166	- 2/18	111	.099	.159	.355	.219	.018	.046	.078	.291	.085		37	traits
-	.517** .823**	.536**	.076 370	.121	060	.244	.032	.306	.495*	.514**	.647**	.727**	.719**	180	087	608**	546**	.275	341	433*	504*	.165	188	- 221	2/5	132	.138	.331	.114	.123	.089	.118	.263	.058		38	
.956**	.511** .816**	.502*	379	.062	066	.284	.004	.314	.538**	.537**	.739**	.749**	.742**	158	043	568**	558**	.262	377	430*	495*	.241	285	233	248	107	.177	.300	.168	.072	.233	.168	.287	.116		39	

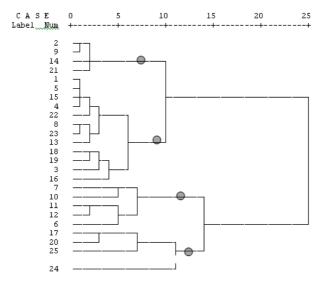
Continue Table 3- The simple correlation (r) between values of H. perforatum L.

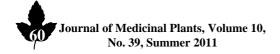
^{*} and **: p < 0.05 and p < 0.01, respectively

a 1-stem height; 2-number of branches; 3 and 4-respectively the smallest and largest secondary stems length; 5-stem diameter 6- number of stem internodes; 7 and 8- respectively numbers of flowering and non-flowering branches; 9 and 10-respectively the bottom leaves length and width; 11 and 12-respectively the top leaves length and width; 13 and 14- respectively inflorescence length and width; 15and 16- respectively flower length and width; 17 and 18- respectively petal length and width; 19 and 20- respectively sepal length and width; 21 and 22-respectively capsule length and width; 23, 24 and 25-respectively dark glands density on the higher, middle and bottom leaves; 26- dark glands density on the petal; 27, 28 and 29- light glands density on the top, middle and bottom leaves; 30-the fifth internodes' length; 31 and 32- respectively numbers of capsules and flowers; 33-flowers diameter before opening; 34, 35 and 36 respectively light glands density on the top, middle and bottom leaves surface area; 37, 38 and 39- respectively dark glands density on the top, middle and bottom leaves surface area; 37, 38 and 39- respectively dark glands density on the top, middle and bottom leaves surface area.

9	
9	
ب	
ιĊ	
2025	
\circ	
S	
on	
٠,	
Ω	
.EI	
from	
Ď	
7	
oac	
- 5	
5	
0	
\sim	

Table 4 - Principal component analysis using morpholog	PC1	PC2	PC3	PC4
Traits Eigen value	11.866	7.767	4.717	2.559
Proportion of variance	30.426	19.915	12.094	6.561
Cumulative variance	30.426	50.341	62.435	68.996
		Eiger	vector	
	PC1	PC2	PC3	PC4
Length stem	<u>0.736</u>	0.493	-0.084	-0.224
Number of branches	0.751	0.001	-0.274	-0.471
The smallest secondary stem length	0.396	0.107	-0.187	0.425
The largest secondary stem length	<u>0.559</u>	0.131	-0.449	0.143
Stem diameter	<u>0.598</u>	0.547	0.146	-0.212
Number of stem internodes	<u>0.626</u>	0.053	-0.307	-0.454
Number of flowering branches	0.622	0.214	0.182	-0.278
Number of non flowering branches	0.532	-0.128	-0.433	-0.373
Bottom leaves length	0.501	<u>0.675</u>	0.226	-0.268
Bottom leaves width	0.286	0.803	0.270	-0.108
Top leaves length	0.141	0.739	0.293	-0.077
Top leaves width	-0.019	<u>0.719</u>	0.295	-0.010
Inflorescence length	0.705	0.359	-0.086	-0.086
Inflorescence width	0.658	0.209	-0.298	0.058
Flower length	-0.343	<u>0.738</u>	0.250	0.310
Flower width	-0.354	0.713	0.287	0.327
Petal length	-0.393	0.566	0.549	0.082
Petal width	0.250	0.303	0.545	0.010
Sepal length	-0.368	0.756	0.251	0.267
Sepal width	-0.375	0.681	-0.030	0.197
Capsule length	0.296	0.283	-0.426	0.217
Capsule width	0.287	0.527	-0.358	0.156
Dark glands density on the top leaves	0.625	-0.271	0.621	-0.008
Dark glands density on the middle leaves	0.787	-0.207	0.542	-0.002
Dark glands density on the bottom leaves	0.821	-0.007	0.389	-0.021
Dark glands density on the petal	0.099	-0.424	0.396	0.274
Light glands density on the top leaves	0.802	-0.194	0.150	0.236
Light glands density on the middle leaves	0.817	0.179	0.038	0.296
Light glands density on the bottom leaves	0.668	0.334	-0.450	0.210
Fifth internodes' length	0.585	0.462	0.343	-0.150
Number of capsules	0.431	0.402	<u>-0.606</u>	0.239
Number of capsules Number of flowers	0.426	0.317	-0.084	-0.323
Number of howers Flower diameter before opening	-0.351	-0.254	0.470	-0.323
Light glands density on the top leaves surface area	-0.331 <u>0.659</u>	-0.234	0.470	0.237
Light glands density on the niddle leaves surface area	<u>0.639</u> 0.686	-0.203 -0.261	-0.003	0.237
Light glands density on the bottom leaves surface area	0.080	-0.224	-0.201	0.322
Dark glands density on the top leaves surface area	0.548	-0.505	0.536	0.48
Dark glands density on the middle leaves surface area	0.560		0.330	0.048
·		<u>-0.572</u>		
Dark glands density on the bottom leaves surface area	<u>0.599</u>	-0.557	0.361	0.108




Fig. 2- Dendrogram generated by cluster analysis of botanical traits (developed using UPGMA clustering procedures). The scales portray a dissimilarity index calculated using Euclidean distance coefficient

The third group had the highest sepals, petals and flowers length and width, flowers diameter and stem internodes number. But the lowest branches number, dark glands density on the leaves, dark and light glands density on the leaves surface area were observed in the fourth group. On the basis of cluster analysis, we can select the best possible population for the breeding programs. Similarly, we found that the classification of the population according to morphological traits did not correspond to the geographical grouping of St. John's wort populations. In other words, the morphology populations' and their geographical distributions did not follow a similar pattern, as the populations from the same geographical origin entered into different clusters (e.g. five and six populations) and also the populations from different geographical origins entered the same cluster (e.g. 9 and 14 populations). Among the populations examined, those from Gilan, Mazandaran, Ardebil and Golestan populations were clustered in different groups, though they were from the regions with far geographical distances (Figure 2).

Discussion

Based on our results, it was revealed that the populations of Alamut (85.56cm) and Chenaran (82.57cm) had the highest plant height and populations of Macrowave-west Rustam Abad (29.92cm)and Sisakht (29.99cm) had the lowest plant height. It found that the largest top and bottom leaves dimensions of Alamut population were measured 15.9 to 34.4 mm for leaves length and 5.9 to 15.9 mm for leaves width. The smallest top and bottom leaves dimensions belonged to Plo-e Sefid population with the leaves length of 7.4 to 10.35 mm and leaves width of 3.9 to 5.25 mm). The largest and smallest dimensions of flowers, sepals and petals were related to the population which gathered from Zanjan/Tarum and Noor cities, respectively. It found that different climate conditions affected on leaves, flowers, sepals and petals dimensions and plant height (Table 2).

Hosseini and Dori reported that the plant height of St. John's wort populations from Garmadasht (120.3cm) was almost two times higher than that of Derazno population

(67.7cm). They stated that the shorter plant height of Derazno region might be due to genetic origin differences or plant acclimatization of St. John's wort with regard to the high altitude of Derazno region. In both the regions no significant correlation between the flowering branches and plant height were stated [11].

Roblek et al. studied *H. perforatum* L. morphological characteristics in different altitudes. They found that plant height decreased at high altitudes due to reduction of stem internodes number and also decrease of leaf chlorophyll content. They found that flowers number decreased as altitude increased (147 flowers at 400 m a.s.l. and 50 flowers at 1700 meters above sea level) [18].

The results of a research conducted in Lithuania (Bagdonaite et al.) on genotypes origin of St. John's wort (18 populations and 2 reformed species) indicated that populations differed in their plant height, sepal length, raw weight, inflorescence dimensions, leaves traits, dark glands density on the leaves, the inflorescence length significantly differ among the genotypes. The width of inflorescence varied from 10.9 to 15.5 cm. Overall, the results indicated that Lithuanians' genotypes of H. perforatum L. were superior to improved varieties in respect of plant height, inflorescence length and width and leaves length and width [1]. Some research conducted on H. perforatum L. populations revealed that different populations varied in their plant height, stem internodes number, leaves and petals dimensions and other traits [4, 19, 21].

Our study showed that this comparison of leaves dimensions was an indication for morphological evaluations of St. John's wort populations and climatic conditions impacted on the plant growth in these regions. It found that the density of dark glands varied on the

top leaves from 3 to 59 glands, on the middle of leaves from 15 to 100 and on the bottom leaves from 1 to 130 glands (Table 2). In this study, the result indicated that dark and light glands density on the top and bottom leaves enhanced in company with increasing dark and light glands density on the middle leaves. In other word, dark and light glands density had correspondingly varied on the different leaves of this plant (Table 3).

Donald et al. studied the effects of light on morphological characteristic and dark glands density on St. John's wort leaves and stated that the light and other environmental parameters had a major consequence on these characteristics. The increasing light intensity augmented stems biomass and development of branches; enhanced the photosynthesis capacity and carbon fixation; and finally dark glands number [5]. Our results are also in agreement with the results of Donald et al. [5].

Based on results, it was revealed that morphological variants of leaves H. perforatum are the narrow-, intermediate-, and broad-leaf varieties [3, 20]. A leaf length: width ratio of 3.1 and 2.0, and a light gland density of 5.7 and 1.7 glands/mm2 leaves characterize the narrow- and broad-leaf varieties, respectively [20, 23]. Southwell and Campbell studied Н. perforatum L. populations in Australia, reported that the narrow-leaf populations contained more dark glands (6.2 glands per mm²) than the broadleaf populations (2.1 glands per mm²) [20]. Our results are also in agreement with the results of Southwell and Campbell [20].

Walker et al. studied the morphological characteristics of St. John's wort populations in California, Montana and Oregon. Their results showed that California population had larger leaf length/ width ratio, greater dark glands density on the leaves and taller stems than those from Montana population. In

addition to the leaf length/width ratio, differences were detected in the following morphological characteristics: leaf dark gland density, leaf light gland density, leaf area, and primary stem length [23]. Our results are also in agreement with the results of Walker et al. [23].

Based on our research results, it was revealed that significant and negative correlations were observed among sepal and petal length with non-flowering branches number, capsule length and width with flower diameter. While significant and positive correlations were observed among capsule width with capsules number, sepal width with the fifth internodes' length (Table 3).

Naghdi Badi et al. reported that sepal length with inflorescence width had a positive significant correlation (0.979), but a negative significant correlation was observed between sepal length with non-flowering branches number (-0.924). Moreover they significant and negative correlation between sepal width with dark glands density on the petal (-0.899), and a positive significant correlation between it with non-flowering branches (0.924). They reported significant and positive correlations between light glands density with leaf length: width ratio (0.936) and petal length (0.937) [14]. Our results are also in agreement with the results of Naghdi Badi et al. [14]. Bagdonaite et al. in a study on St. John's wort genotypes in Lithuanian realized that there were the highest significant correlations among inflorescence, leaves, and petals length and width [2].

Our results indicated that leaves and flowers number, leaves dimensions and dark and light glands density on the leaves increased with rising stem height, flowering branches number and secondary branches number. Based on results of our study showed that every environmental condition (location)

had an enormous effect on the growth and development, plant reproduction, height, leaves, flowers and inflorescence dimensions, etc. of *H. perforatum* L. populations (Table 2 and 3).

Lebaschi et al. studied four St. John's wort populations in natural habitats in Iran and reported that among the natural habitats of Gorgan, Noshaher, Siahkal and Khalkhal, the highest plant performance was related to Gorgan and Siahkal populations [12]. Fox et al. studied the effect of summer precipitation and winter temperatures on growth and reproduction of *H. perforatum* L. Their results showed that both summer rainfall regimes and winter warming modified the performance, in a way that the winter warming had positive effects with earlier initiation of plant growth but it had strong negative effects on plant height, inflorescence and flowering and reproduction. Summer drought reduced reproductive yield. It found that plants modify acquisition of carbon and nitrogen, leaf water content, surface temperature, and secondary compounds in drought conditions. But summer drought did no direct impact on plant height and flowering [8].

Ejtehadi et al. investigated St. John's wort populations in some parts of Khorasn province of Iran and reported that topography and degree and point of slope affected the dispersal of plants more than above sea level factor [7]. Dori et al. gathered St. John's populations from different altitudes Golestan province and reported that each habitat has got its own range of suitable the conditions for plant growth Bagdonaitė1 et al. determined that the vast ecological adaptation of St. John's wort is depended on the kind of population [2]. The present results are also in agreement with the results of Bagdonaitė1 et al. [2].

Conclusion

Our results showed that St. John's wort is a perennial species with variability in morphological characteristics. Moreover, the clustering of traits and parameters, the strong correlations of traits and large morphological

variations existed among the St. John's wort populations in different natural habitats of Iran indicated that these populations are important genetic resources and initial breeding material which could be utilized in future breeding programs.

References

- **1.** Bagdonaite E, Zygmunt B and Radusiane J. Morphological and chemical evaluation of St. John's Wort (*Hypericum perforatum* L.) populations from Lithuania. *Herba Polonica* 2001; 47: 294 303.
- **2.** Bagdonaitė 1 E, Janulis V, Ivanauskas L and Labokas J. Ex situ studies on chemical and morphological variability of *Hypericum perforatum* L. in Lithuania. *Biologija J.* 2007; 53: 63 70.
- **3.** Campbell MH, May CE, Southwell IA, Tomlinson JD, Michael PW. Variation and varietal determination in *Hypericum perforatum* L. (St. John's wort) in New South Wales. *Plant Prot. Q.* 1992; **7**: 43–45.
- **4.** Cirk C, Radusien J, Karabuk B, Janulis V, Ivanauskas L. Variation of bioactive compounds in *Hypericum perforatum* L. in Turkey during its phonological cycle. *Integrative Plant Bio. J.* 2007; 49: 615 20.
- **5.** Donald PB, Gawienowski MC. Differential effects of light and nitrogen on production of hypericins and leaf glands in *Hypericum perforatum* L. *Plant Physiol. Biochem.* 2001; 39: 1075 81.
- **6.** Dori MA, Hosseini SA, Lebaschi MH. Investigation of hypericin of *Hypericum* perforarum L. in two natural habitats of Golestan province in Iran. Iran. Med. and Arom. Plants J. 2008; 20: 397 406.

- **7.** Ejtehadi H, Kian mehr M and Notghi moghadam R. Study some of the respects of ecology (*Hypericum perforatum* L.) in some regions of Khorasan Province in Iran. *Iran Bio. J.* 2003; 14: 46 53.
- **8.** Fox LR, Ribeiro SP, Brown VK, Masters GJ and Clarke IP. Direct and indirect effects of climate change on St John's wort, *Hypericum perforatum* L. (Hypericaceae). *Oecologia* 1999; 120: 113 22.
- **9.** Guedes RC, Eriksson LA. Theoretical study of hypericin. *J. Photochem. and Photobiol. A: Chem.* 2005; 172: 293 9.
- **10.** Hevia F, Berti M and Wilckens R. Quality and yield in st. John, s wort (*Hypericum perforatum* L.) harvested in different phenological stages. *Acta Agro. Hungarica* 2002; 50: 349 58.
- **11.** Hosseini SA and Dori MA. Establishment and top yield of *Hypericum perforatum* collected from Drazno and Garmabdasht in Golestan province. Iran. *Med. and Arom. Plants J.* 2005; 20: 397 406.
- **12.** Lebaschy MH, Matin A, Sharifi E. Comparison of hypericin between natural and agroecosistems. *Pajouhesh and Sazandegi J.* 2003; 59: 48 54.
- **13.** Lebaschy MH and Sharifi E. Application of physiological growth indices for suitable harvesting of *Hypericum perforatum*.

Pajouhesh and Sazandegi J. 2004; 65: 65 - 75.

- **14.** Naghdi Badi HA, Ziaei SA, Baghalian K and Ahvazi M. The compare of different genotypes of *Hypericum perforatum*. The Project of Institute of Medicinal Plants Research 2003, pp: 1 94.
- **15.** Naghdi Badi HA, Ziaei SA, Mirjalali MH, Ahvazi M, Khalighi Sigaroudi F, Habibi Khaniani B, Farahani A. Variation in quantitive yield and hypericin content of St. Johns Wort., *Hypericum perforatum* L. *J. Med. Plants* 2004; 3: 59 74.
- **16.** Naghdi Badi HA, Maki zadeh Tafti M and Ziaei SA. A review of St. Johns Wort., *Hypericum perforatum* L. *J. Med. Plants* 2005; 4: 1 14.
- **17.** Naughton, M. & Bourke, C.A. *St John's Wort. NSW DPI Primefact 694.* URL: http://www.dpi.nsw.gov.au/data/assets/pdf.file /0007/193075/St-Johns-wort.pdf Accessed December 2007.
- **18.** Roblek M, Germ M, Sedej TT and Gaberscik A. Morphological and biochemical variations in St. John's wort, *Hypericum perforatum* L., growing over altitudinal and

- UV-B radiation gradients. *Period Biol.* 2008; 110: 257 62.
- **19.** Sirvent TM, Walker L, Vance N and Gibson DM. Variation in hypericins from wild populations of *Hypericum perforatum* L. in the Pacific northwest of USA. *Econ. Bot.* 2002; 56: 41 8.
- **20.** Southwell HA and Campbell MH. Hypericin content variation in *Hypericum perforatum* in Australia. *Phytochem.* 1991; 30: 475 8.
- **21.** Southwell HA and Bourke CA. Seasonal variation in hypericin content of *Hypericum perforatum* L. (St. John's Wort). *Phytochem*. 2001; 56: 437 41.
- **22.** Stoyanova M and Apostova B. The influence of altitude upon the biochemical composition of tutsan (*Hypericum perforatum*). *Nauka za Gorata* 1992; 29: 77 82.
- **23.** Walker L, Sirvent T, Gibson D and Vance N. Regional differences in hypericin and pseudohypericin concentrations and five morphological traits among *Hypericum Perforatum* plants in the north western United States. *Can. J. Bot.* 2001; 79: 1248 55.