year 18, Issue 72 And S12 (Supplement 12 2019)                   J. Med. Plants 2019, 18(72 And S12): 247-266 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasani A, Zarei M A. Study of Mushroom Tyrosinase Inhibitory Activity Among 70 Plants from Kurdistan Provience. J. Med. Plants 2019; 18 (72) :247-266
URL: http://jmp.ir/article-1-1672-en.html
1- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
2- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran , mazarei@uok.ac.ir
Abstract:   (2766 Views)
Background: Tyrosinase is a multifunctional, glycosylated and copper containing oxidase, and is found in fungi, microorganisms, plants and animals. The most important function of tyrosinase in mammals is melanogenesis. Hyperpigmentation is a serious problem for beauty. It is possible to cure these diseases with inhibition of tyrosinase. There have been attempts to control the metabolism of pigmentations by means of natural chemical agents.
Objective: The aim of this study was to find new potent inhibitors for ،tyrosinase among plant extracts.  
Method: The subject of this study was anti-tyrosinase activity of methanolic extracts of 70 plant species, using mushroom tyrosinase inhibition method. All extracts were screened for their tyrosinase inhibitory activity at 400, 100, 25, 6.2 µg/ml final concentrations in reaction mixture. Assay method was based on spectrophotometric study of absorption in 492 nm and kojic acid was used as positive controls.
Results: The results showed that nine plant extracts including Bongardia chrysogonum (L.) Spach, Podophylaceae, Heptaptera anatolica (Boiss.) Tutin, Apiaceae, Hyoscyamus kurdicus Bornm, Solanaceaes, Hypericum scabrum, Marrubium cuneatum, Nonea hypoleia, Salvia suffruticosa, Scrophularia pruinosa Boiss, Scrophulariaceae and Verbascum phoenicum L, Scrophulariaceae, (400 µg/ml) and two plant extracts including Asperugo procumbens L, Boraginaceae and Astragalus siliquosus Boiss. subsp. siliquosus, Papilionaceae (25µg/ml) have inhibitory activity more than 60%. Saliva suffruticosa showed a considerable inhibition value, 92.62% (400 µg/ml) and low IC50 (94.77 µg/ml) and according to kinetic analysis its type of inhibition on tyrosinase is noncompetitive.
Conclusion: Because of its high inhibitory activity and low IC50, Saliva suffruticosa extract would be interesting for further studies.
Full-Text [PDF 1559 kb]   (939 Downloads)    
Type of Study: Research | Subject: Pharmacognosy & Pharmaceutics
Received: 2017/04/9 | Accepted: 2018/12/23 | Published: 2020/03/7

References
1. Chang T. An Updated Review of Tyrosinase Inhibitors. International Journal of Molecular Sciences 2009; 10: 2440-2475. [DOI:10.3390/ijms10062440]
2. Garcia-Borron J. C. and Solano F. Molecular Anatomy of Tyrosinase and its Related Proteins: Beyond the Histidine-Bound Metal Catalytic Center. Pigment Cell Res. 2002; 15: 162-173. [DOI:10.1034/j.1600-0749.2002.02012.x]
3. Chang, T. Tyrosinase and Tyrosinase Inhibitors. Journal of Biocatalysis & Biotransformation 2012; 1: 1-2.
4. Kim M., Park J., Song K., Kim H. G., Koh J. S and Boo Y. C. Screening of plant extracts for human tyrosinase inhibiting effects. International Journal of Cosmetic Science 2012; 34: 202-208. [DOI:10.1111/j.1468-2494.2012.00704.x]
5. Ismaya W. T., Rozeboom H. J, Weijn A., Mes J. J., Fusetti F., Wichers H. J. and Dijkstra B. W. Crystal Structure of Agaricus bisporus Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone. Biochem. 2011; 50: 5477-5486. [DOI:10.1021/bi200395t]
6. Mason H. S. Tyrosinase dihydroxyphenylalanine by mechanism of the oxidation of the chemistry of melanin: iii. J. Biological Chem. 1984; 172: 83-99.
7. Mapunya M. B., Nikolova R. V. and Lall N. Melanogenesis and Antityrosinase Activity of Selected South African Plants. Evidence-Based Complementary and Alternative Medicine 2012; 10: 1-6. [DOI:10.1155/2012/374017]
8. Momtaz S., Mapunya B. M., Houghton P. J., Edgerly C., Hussein A., Naidoo A. and Lall N. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J. Ethnopharmacol. 2008; 119: 507-512. [DOI:10.1016/j.jep.2008.06.006]
9. Halaban R., Patton R. S., Cheng E., Svedine S., Trombetta E. S., Wahl M. L., Ariyan S. and Hebert D. N. Abnormal Acidification of Melanoma Cells Induces Tyrosinase Retention in the Early Secretory Pathway. The Journal of Biological Chem. 2002; 277: 14821-14828. [DOI:10.1074/jbc.M111497200]
10. Chang T. Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials 2012; 5: 1661-1685. [DOI:10.3390/ma5091661]
11. Brighnti S., Camera E. and Picardo. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003; 16: 101-110. [DOI:10.1034/j.1600-0749.2003.00029.x]
12. Zho W. and Gao J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. Journal of Investigative Dermatology Symposium Proceedings 2008; 13: 20-24. [DOI:10.1038/jidsymp.2008.8]
13. Kamkaen N., Mulsri N. and Treesak C. Screening of Some Tropical Vegetables for Anti-tyrosinase Activity. Thai Pharmaceutical and Health Science J. 2007; 2: 15-19.
14. Lima L. L., Lima R. M., da Silva A. F., deCarmo A. M., da Silva A. D. and Raposo N. R. B. Azastilbene Analogs as Tyrosinase Inhibitors: New Molecules with Depigmenting Potential. Hindawi Publishing Corporation the Scientific World J. 2013; 10: 1-7. [DOI:10.1155/2013/274643]
15. Sariri R., Sabbaghzadeh R. and Poumohamad F. In-Vitro Antioxidant and Anti-Tyrosinase Activity of Methanol Extracts from Crocus Sativus Flowers. Pharmacologyonline 2011; 3: 1-11.
16. Masuda T., Yamashita T., Takeda Y. and Yonemori S. Screening for Tyrosinase Inhibitors among Extracts of Seashore Plants and Identification of Potent Inhibitors from Garcinia subelliptica. Bioscience, Biotechnology and Biochem. 2005; 69: 197-201. [DOI:10.1271/bbb.69.197]
17. Vuthy T.Y. Screening of anti-tyrosinase activity of Cambodian plants. Ekong Health Congress. 2011, 24-27.
18. Harborne, J. B. and Williams, C. A. Advances in flavonoid research since 1992. Phytochem. 2000; 55: 481-504. [DOI:10.1016/S0031-9422(00)00235-1]
19. Rendon M. I. and Gaviri J. I. Review of Skin-Lightening Agents. Dematol. Surg. 2005; 31: 886-889. [DOI:10.1111/j.1524-4725.2005.31736]
20. Gillbro J. M. and Olsson M. J. The melanogenesis and mechanisms of skin lightening agents - existing and new approaches. International Journal of Cosmetic Sci. 2011; 33: 210-221. [DOI:10.1111/j.1468-2494.2010.00616.x]
21. An S. M., Lee S. I., Choi S. W., Moon S. M. and Boo Y. C. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by a melanocyte stimulating hormone. British Journal of Dermatol. 2008; 159: 292-299. [DOI:10.1111/j.1365-2133.2008.08653.x]
22. Xie L. P., Chen Q. X., Huang H., Wang H. Z. and Zang R. Q. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochemistry (Moscow), 2003; 68: 487-491. [DOI:10.1023/A:1023620501702]
23. Nitoda T., Isao T. and Kubo I. Effect of Phenolic Compounds Isolated from Rabdosia Japonica on B16-F10 Melanoma Cells. Phytotherapy Res. 2008; 22: 867-872. [DOI:10.1002/ptr.2373]
24. Nagata H., Takekoshi S., Takeyama R., Homma T. and Osamura Y. Quercetin Enhances Melanogenesis by Increasing the Activity and Synthesis of Tyrosinase in Human Melanoma Cells and in Normal Human Melanocytes. Pigment Cell Res. 2004; 17: 66-73. [DOI:10.1046/j.1600-0749.2003.00113.x]
25. No J. K., Soung D. Y., Kim Y. J., Shim K. H., Jun Y. S., Rhee S. H., Yokozawa T. and Chung H. Y. Inhibition of tyrosinase by Green Tea Components. Life Sci. 1999; 65: 241-246. [DOI:10.1016/S0024-3205(99)00492-0]
26. Ioannou I. and Ghoul M. Prevention of Enzymatic Browning in Fruit and Vegetables. European Scientific J. 2013; 9: 310-341.
27. Leu Y. L., Hwang T. L., Hu J. W. and Fang J. Y. Anthraquinonea from Polygonum cuspidatum as Tyrosinase Inhibitors for dermal Use. Phytotherapy Res. 2008; 22: 552-556. [DOI:10.1002/ptr.2324]
28. Tief K., Hahne M., Schmidt A. and Beermann F. Tyrosinase, the key enzyme in melanin synthesis, is expressed in murine brain. European J. Biochem. 1996; 241: 12-16. [DOI:10.1111/j.1432-1033.1996.0012t.x]
29. Sangsrichan S. and Ting R. Antioxidation and Radical Scavenging Activities and Tyrosinase Inhibition of Fresh Tea Leaves, (Camellia Sinensis). Science Journal Unon Ratchathani University 2010; 1: 76-81.
30. Vaibhav S. and Lakshaman K. Tyrosinase Enzyme Inhibitory Activity of selected Indian Herbs. International Journal of Research in Pharmaceutical and Biomedical Sci. 2012; 3: 977-982.
31. Sahu R. K., Roy A., Matlam M., Deshmukh V. K., Dwivedi J. and Jha A. K. Review on Skin Aging and Compilation of Scientific validated medicinal Plants, Prominence to Flourish a Better Research reconnoiters in Herbal Cosmetic. Research J. Medicinal 2013; 7: 1-22. [DOI:10.3923/rjmp.2013.1.22]
32. Kim H., Choi J., Cho J. K., Kim S. Y. and Lee Y. S. Solid-phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability, and toxicity. Bioorganic & Medicinal Chemistry Letters 2004, 14: 2843-2846. [DOI:10.1016/j.bmcl.2004.03.046]
33. Sato K. and Toriyama M. Depigmenting Effect of Catechins. Molecules 2009; 14: 4425-4432. [DOI:10.3390/molecules14114425]
34. Macrini D. J., Suffredini I. B., Varella A. D., Younes R. N. and Ohara M. T. Extracts from Amazonian plants have inhibitory activity against tyrosinase: an in vitro evaluation. Brazilian J. Pharmaceutical Sci. 2009; 45: 715-721. [DOI:10.1590/S1984-82502009000400015]
35. Miyazawa M., Oshima T., Koshio K., Itsuzaki Y. and Anzai J. Tyrosinase Inhibitor from Black Rice Bran. J. Agricultural Food Chem. 2003; 5: 6953-6956. [DOI:10.1021/jf030388s]
36. Tel G., Ozturk M., Duru M. E., Dogan B. and Harmandar M. Fatty Acid Composition, Antioxidant, Anticholinesterase and Tyrosinase Inhibitory Activities of Four Serratula Species from Anatolia. Records of Natural Products 2013; 7: 86-95.
37. Ha T. J., Tamura S. and Kubo I. Effects of Mushroom Tyrosinase on Anisaldehyde. J. Agricultural Food Chem. 2005; 7: 7024-7028. [DOI:10.1021/jf047943q]
38. Moon J. Y., Yim E. Y., Song G., Lee N. H. and Hyun C. G. Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants. Eur. Asian J. BioSci. 2010; 4 (6): 41-53. [DOI:10.5053/ejobios.2010.4.0.6]
39. Saewan N., Koysomboon S. and Chantrapromma K. Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC. J. Medicinal Plants Res. 2011; 5: 1018-1025.
40. Ding H. Y., Lin H. C. and Chang T. S. Tyrosinase inhibitors isolated from the roots of Paeonia suffruticosa. J. Cosmetic Sci. 2008; 60: 347-352.
41. Li H. T., Ruan S. W., Huang J. C., Chen H. L. and Chen C. Y. Antioxidant and tyrosinase inhibitor from Leucaena leucocephala. African J. Biotechnol. 2012; 11: 14182-14185. [DOI:10.5897/AJB12.1119]
42. Therdphapiyanak N., Jaturanpinyo M., Waranuch N., Kongkaneramit L. and Sarisuta N. Development and assessment of tyrosinase inhibitory activity of liposomes of Asparagus racemosus extracts. Asian J. Pharmaceutical Sci. 2013; 8: 134-142. [DOI:10.1016/j.ajps.2013.07.017]
43. Souza P. M., Elias S. T., Simeoni L. A., de Paula J. E., Gomes S. M., Guerra E. N., Fonseca Y. M., Silva E. C., Silveira D. and Damaris M. P. O. Plants from Brazilian Cerrado with Potent Tyrosinase Inhibitory Activity. PLoS ONE 2012; 7: e48589. doi: 10.1371/journal.pone.0048589. [DOI:10.1371/journal.pone.0048589]
44. Loizzo M. R., Tundis R. and Menichini F. Natural and Synthetic Tyrosinase Inhibitors as Antibrowning Agents: An Update. Comprehensive Reviews in Food Science and Food Safety 2012; 11: 378-398. [DOI:10.1111/j.1541-4337.2012.00191.x]
45. Lim T. Y., Lim Y. Y. and Yule C. M. Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem. 2009; 114: 594-599. [DOI:10.1016/j.foodchem.2008.09.093]
46. Kubo I., Chen Q. X., Nihei K. I., Calderon J. S. and Cespedes C. L. Tyrosinase Inhibition Kinetics of Anisic Acid. Verlag der Zeitschrift für Naturforschung 2003; 58: 713-718. [DOI:10.1515/znc-2003-9-1021]
47. Seo S. Y., Sharma V. K. and Sharma A. T. Mushroom Tyrosinase: Recent Prospects. J. Agricultural and Food Chem. 2003, 51: 2837-2853. [DOI:10.1021/jf020826f]
48. Suntar I., Akkol E. K., Senol F. S. Keles H. and Orhan I. E. Investigating wound healing, tyrosinase inhibitory and antioxidant activities of the ethanol extracts of Salvia cryptantha and Salvia cyanescens using in vivo and in vitro experimental models. J. Ethnopharmacol. 2011; 135: 71-77. [DOI:10.1016/j.jep.2011.02.022]
49. Kim J. H., Kim M. R., Lee E. S. and Lee C. H. Inhibitory Effects of Calycosin Isolated from the Root of Astragalus membranaceus on Melanin Biosynthesis. Biological Pharmacology Bulletin 2009; 32: 264-268. [DOI:10.1248/bpb.32.264]
50. Karioti A., Protopappa A., Megoulas N. and Skaltsa H. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorganic & Medical Chem. 2007; 15: 2708-2714. [DOI:10.1016/j.bmc.2007.01.035]
51. Zargari A., Medicinal Plants. (7th edition). Vol. 3. Tehran University Publications. IRAN. 1997, pp: 675-679.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb