Antihistaminic and Anticholinergic Activity of Methanolic Extract of Barberry Fruit (*Berberis vulgaris*) in the Guinea-Pig Ileum

Khosrokhavar R (Ph.D.)\(^1\), Ahmadiani A (Ph.D.)\(^2\), Shamsa F (Ph.D.)\(^3\)

\(^1\) Food and Drug Laboratory Research Center and Food and Drug Control Laboratories, MOH& ME, Tehran, Iran
\(^2\) Department of Pharmacology, Faculty of Medicine, the Medical Sciences University of Shaheed Beheshti, Tehran, Iran
\(^3\) Department of Chemistry, Faculty of Pharmacy, the Medical Sciences University of Tehran, Tehran, Iran

Corresponding author: Food and Drug Laboratory Research Center (FDLRC), MOH & ME, Tehran, Iran
Tel: +98 - 21 - 66463613, Fax: +98-21 - 66404330
E-mail: khosrokhavar_r@yahoo.com

Receive: 22 Jun 2010 \hspace{1cm} Acceptance: 31 Aug. 2010

Abstract

Background: Barberry (*Berberis vulgaris*) is a well known medicinal plant in Iran and has also been used as food.

Objective: This study was conducted to evaluate antihistaminic and anticholinergic activity of methanolic extract of barberry fruit.

Methods: Methanolic extract was prepared and pharmacologically studied on isolated guinea-pig ileum, dose-response curves of histamine and acetylcholine with and without methanolic extract were plotted.

Results: The \(p_{A2} \) values for antihistaminic activity of methanolic extract and dexchlorpheniramine were calculated (extract; \(p_{A2} \pm S.E.M = 3.53 \pm 0.16 \ [-\log C(g/l)] \); dexchlorpheniramine; \(p_{A2} \pm S.E.M = 9.36 \pm 0.14 \ [-\log C (M)] \)) and compared with each other. The \(p_{A2} \) values of anticholinergic activity of methanolic extract and atropine were also calculated (extract; \(p_{A2} \pm S.E.M = 4.18 \pm 0.17 \ [-\log C(g/l)] \); atropine, \(p_{A2} + S.E.M = 8.99 \pm 0.13 \ [-\log C(M)] \)) and compared.

Conclusion: The results indicated antihistaminic and anticholinergic activity of methanolic extract.

Keywords: Barberry, Antihistaminic, Anticholinergic, Guinea-Pig ileum, Methanolic extract
Antihistaminic and…

Introduction
Barberry (*Berberis vulgaris* L., Var. asperma Don., family Berberidaceae) grows in Asia and Europe; it is well known medicinal plants in traditional medicine, the fruits has also been used as food [1, 2].

Medicinal properties for all parts of the plant have been reported, including tonic, antimicrobial, antiemetic, antipyretic, antipruritic, antioxidant, anti-inflammatory, hypotensive, antiarrhythmic, sedative, antinoceptive, anticholinergic and cholagogue actions, and it has been used in some cases like cholecystitis, cholelithiasis, jaundice, dysentery, leishmaniasis, malaria and gall stones [1-10].

In spite of extensive applications and numerous properties, the mechanism of action in most of its effects is not exactly clear. Some of these properties may occur due to antihistaminic and anticholinergic effects. According to Shamsa et al. studies results, this work was designed to evaluate antihistaminic and anticholinergic activity of methanolic extract of barberry fruit (*Berberis vulgaris*) in guinea-pig ileum as a valuable and accurate method in order to isolate and identify components are responsible for pharmacological properties of barberry.

Materials and Methods

Sample preparation
Plant materials (barberry fruit) obtained from Bazar and authenticated at the Herbarium of Faculty of Pharmacy of Tehran Medical Science University, where the voucher specimen is deposited under No. 6507. Barberry fruits (280 g) were extracted by continuously refluxing of methanol in Soxhlet extractor 8-12 hours. The obtained extract was concentrated in a rotary vacuum evaporator. The thick obtained syrup was dried (evaporated completely) by freeze drying to yield 34.88 g adhesive powder. The desired concentration (w/v) were prepared from this powder.

Pharmacological test
Male albino fasted (24 h) guinea pigs weighing 250-500 g were killed by a blow to the head and exsanguinated. Terminal segments of ileum about 1 – 1.5 cm in length were prepared and placed in 30 ml baths filled with Tyrode solution (NaCl, 136.7; KCl, 2.68; MgCl$_2$ 1.05; NaH$_2$PO$_4$ 0.42; CaCl$_2$, 1.80; NaHCO$_3$, 11.90 ; glucose, 5.55 mM). The solution was kept at 37ºC and oxygenated continuously. Initial tension was 1 g and stabilization time was 45-60 min. Isometric contractions were recorded on NARCO F-60 transducer connected to a NARCO trace 80 recorder.

Increasing concentration of histamine and acetylcholine (10$^{-9}$ to 10$^{-4}$ M) were added to the bath and the control cumulative concentration-response curve for each one (histamine or acetylcholine) was constructed. Methanolic extract, dexchlorpheniramine or atropine was then added to the bath 1 min before the corresponding concentration-response curve was recorded [7].

Drugs and Solvents
Dexchlorpheniramine maleate (Schering), atropine sulfate (Merck), histamine dihydrochloride (Sigma), acetylcholine chloride (Sigma) and methanol 99.8% (Merck). All drugs were dissolved in distilled water and desired concentration were prepared.

Analysis of results
Contractions were expressed as a percentage of the maximal contraction obtained from the corresponding control curve,
each point represents the mean ± S.E.M. of four experiments. The histamine and acetylcholine dose-response curves, in the absence or presence of antagonists, were plotted using the SPSS computer program. The EC$_{50}$, potency (pD$_2$= -log (EC$_{50}$)) and affinity (1/EC$_0$) of histamine and acetylcholine were determined separately. The antagonist potencies (pA$_2$) of methanolic extract, dexchlorpheniramine and atropine were also calculated [7, 11, 13].

Results
Methanolic extracts displaced the cumulative histamine dose-response curve towards higher concentration, i.e. it increased the EC$_{50}$ of histamine (Fig. 1A) as did dexchlorpheniramine (Fig. 1B). This displacement increased with increasing both extract and dexchlorpheniramine dose, histamine affinity and potency decreased with increasing dose of extract and dexchlorpheniramine (Table 1).

![Fig. 1- Effect of increasing concentrations of methanolic extract (A) and dexchlorpheniramine (B) on the cumulative dose-response curves to histamine in the guinea-pig ileum. Methanolic extract: Control (●), 3*10^{-4} g/l (▼), 6*10^{-4} g/l (■), 9*10^{-4} g/l (▲). Dexchlorpheniramine: Control (●), 1.3*10^{-9} M (▼), 2.6*10^{-9} M (■), 3.9*10^{-9} M (▲)
The cumulative acetylcholine dose-response curve shifted to the right in the presence of extract (Fig. 2A). A similar rightward shift was observed in the acetylcholine dose-response curve by adding atropine to the bath (Fig. 2B); rightward shifts were dose dependent, the affinity and potency of acetylcholine decreased with increasing dose of extract and atropine (Table 2).

The \(pD_2 \) values which had been obtained from histamine dose-response curve for methanolic extract and dexchlorpheniramine were:

- Methanolic extract: \(pA_2 \pm S.E.M= 3.53 \pm 0.16 \) \([-\log C(g/l)]\);
- Dexchlorpheniramine: \(pA_2 \pm S.E.M= 9.36 \pm 0.14 \) \([-\log C(M)]\).

Calculated \(pA_2 \) values for methanolic extract and atropine from acetylcholine dose-response curves were:

- Methanolic extract: \(pA_2 \pm S.E.M. = 4.18 \pm 0.17 \) \([-\log C(g/l)]\);
- Atropine: \(pA_2 \pm S.E.M. = 8.99 \pm 0.13 \) \([-\log C(M)]\).

Discussion

The parallel rightward shift in agonist concentration-response curves in the presence of increasing concentrations of antagonist is observed with competitive antagonists. The occurred inhibition with competitive antagonists can be overcome by increasing the concentration of agonist. Finally, a maximal effect can be achieved by using sufficient agonist [7, 13]. The results of this study indicate a similar rightward shift in dose-response curves of histamine and acetylcholine in the presence of methanolic extract (Fig. 1A and Fig 2A), dexchlorpheniramine (Fig. 1B) and atropine (Fig 2B). By increasing the dose of methanolic extract, the EC50 increased and \(pD_2 \) and the affinity of histamine and acetylcholine decreased, similar to dexchlorpheniramine and atropine (Tables 1 and 2). The maximal effects of histamine and acetylcholine that were depressed in the presence of extract were not achieved by increasing concentrations of histamine and acetylcholine (Fig. 1A and Fig. 2A), but in presence of dexchlorpheniramine and atropine, the maximal effect of histamine and acetylcholine in control curves was obtained again. This decrease in maximal effect (contraction) in the presence of methanolic extract might perhaps reflect a partly non-competitive or irreversible competitive type of antagonism or the impurity of methanolic extract possibly being responsible for this decrease.

From the cumulative dose-response curves, the \(pD_2 \) values for histamine were calculated:

- \(pD_2 \pm S.E.M. = 6.90 \pm 0.18 \) (Fig. 1A), \(pD_2 \pm S.E.M. = 6.18 \pm 0.26 \) (Fig. 1B), which are in the same order of magnitude as the values found in the literatures [7, 13]. Also, the \(pD_2 \) for acetylcholine, \(pD_2 \pm S.E.M. = 6.01 \pm 0.31 \) (Fig. 2A), \(pD_2 \pm S.E.M. = 6.64 \pm 0.33 \) (Fig. 2B),

Table 1- The affinity and \(pD_2 \) values of histamine in the presence of different dose of dexchlorpheniramine and methanolic extract

<table>
<thead>
<tr>
<th>Dose (M)</th>
<th>(pD_2)</th>
<th>Affinity</th>
<th>Dose (g/l)</th>
<th>(pD_2)</th>
<th>Affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexchlorpheniramine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6.82</td>
<td>(6.60 \times 10^6)</td>
<td>0</td>
<td>7.27</td>
<td>(1.86 \times 10^7)</td>
</tr>
<tr>
<td>1.30\times 10^{-9}</td>
<td>6.39</td>
<td>(2.45 \times 10^6)</td>
<td>3.00\times 10^{-4}</td>
<td>7.09</td>
<td>(1.20 \times 10^6)</td>
</tr>
<tr>
<td>2.60\times 10^{-9}</td>
<td>5.92</td>
<td>(8.24 \times 10^5)</td>
<td>6.00\times 10^{-4}</td>
<td>6.75</td>
<td>5.62\times 10^6</td>
</tr>
<tr>
<td>3.90\times 10^{-9}</td>
<td>5.61</td>
<td>(4.07 \times 10^5)</td>
<td>9.00\times 10^{-4}</td>
<td>6.47</td>
<td>2.95\times 10^6</td>
</tr>
<tr>
<td>Methanolic extract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pD_2 \pm S.E.M. = 6.18 \pm 0.26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2- Effect of increasing concentrations of methanolic extract (A) and dexchlorpheniramine (B) on the cumulative dose-response curves to acetylcholine in the guinea-pig ileum. Methanolic extract: Control (●), 3×10^{-4} g/l (▼), 6×10^{-4} g/l (■), 9×10^{-4} g/l (▲). Atropine: Control (●), 6.66×10^{-9} M (▼), 1.33×10^{-8} M (■), 2×10^{-8} M (▲).
Table 2- The affinity and pD₂ values of acetylcholine in the presence of different dose of atropine and methanolic extract

<table>
<thead>
<tr>
<th>Dose (M)</th>
<th>pD₂</th>
<th>Affinity</th>
<th>Dose (g/l)</th>
<th>pD₂</th>
<th>Affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine</td>
<td>7.49</td>
<td>3.09×10⁷</td>
<td>6.75</td>
<td>5.62×10⁸</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6.80</td>
<td>6.24×10⁶</td>
<td>6.23</td>
<td>1.70×10⁶</td>
<td></td>
</tr>
<tr>
<td>6.66×10⁻⁹</td>
<td>6.32</td>
<td>2.10×10⁶</td>
<td>6.00×10⁷</td>
<td>5.77</td>
<td>5.89×10³</td>
</tr>
<tr>
<td>1.33×10⁻⁸</td>
<td>5.96</td>
<td>9.02×10⁵</td>
<td>9.00×10⁶</td>
<td>5.28</td>
<td>1.90×10⁵</td>
</tr>
<tr>
<td>2.00×10⁻⁸</td>
<td>5.66</td>
<td>6.80</td>
<td>6.24</td>
<td>1.70×10⁶</td>
<td></td>
</tr>
</tbody>
</table>

pD₂ ± S.E.M. = 6.64 ± 0.33

pD₂ ± S.E.M. = 6.01 ± 0.31

were comparable with those of other authors [7, 13]. Results showed by increasing the dose of antagonist, the inhibitory effect is increased in the same way. Due to the complexity of methanolic extract, concentrations of extract were calculated in a different way (g/l) from dexcchlorpheniramine and atropine (M), thus the pA₂ values of extract obtained from this study (antihistaminic, pA₂ ± S.E.M. = 3.53 ± 0.16 [-logC (g/l)]; anticholinergic, pA₂ ± S.E.M. = 4.18 ± 0.17 [-logC (g/l)]) were not exactly comparable with pA₂ values of dexcchlorfeniramine (pA₂ ± S.E.M. = 9.36 ± 0.14 [-logC (M)]) and atropine (pA₂ ± S.E.M. = 8.99 ± 0.13 [-logC (M)]). However, the relative comparison of calculated pA₂ values indicated that methanolic extract has antihistaminic and anticholinergic activity. Also, the rightward shift in a parallel manner that occurred in dose-response curves of histamine and acetylcholine in the presence of increasing concentrations of methanolic extract and the similar inhibitory effect of extract with dexcchlorfeniramine and atropine, confirmed the ability of methanolic extract to inhibit histamine and acetylcholine on the guinea-pig ileum.

As many of the H₁ antagonists tend to inhibit responses to acetylcholine (anticholinergic activity) that are mediated by muscarinic receptors, maybe one component from the extract is responsible for both antihistaminic and anticholinergic effects of extract. Also, the number of potent components are not distinguished and perhaps more than one component from the extract is able to inhibit histamine and acetylcholine. Also the presence of alkaloids in the methanolic extract may account for the anticholinergic and antihistaminic activity. This group of compounds widely occurring in the medicinal plants have been shown to display a remarkable array of biochemical and pharmacological actions, including relaxing effects on intestinal smooth muscle [5, 7, 8].

Conclusion

In conclusion, barberry (B. valguris) fruit methanolic extract seems to have antihistaminic and anticholinergic activity on the guinea-pig ileum, similar to that of H₁-antihistamine (dexcchlorpheniramine) and anticholinergic (atropine). Analysis of methanolic extract, isolation, purification and identification of the structure of the components like alkaloids and investigation of antihistaminic and anticholinergic activity of each one in future studies is necessary to confirm these properties definitely.
References