نمایش محتوای تغییرات اساسگیاه دارویی بلیمو (Lippia citriodora (Palau) Kunth) تا آنکه تأثیر خشک کردن با آن خلاء و عملیات پیش خشک کردن

على رضوایی اقدم ۱، حسنعلی نقدی بادی ۲، وحید عبادی، رضا حاجی آقایی ۳، سید ابراهیم حسینی

۱- گروه باغبانی، دانشگاه کشاورزی، واحد علم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
۲- مرکز تحقیقات گیاهان دارویی، پژوهشگاه گیاهان دارویی جهاد دانشگاهی، کرج، ایران
۳- گروه صنایع غذایی، دانشگاه صنایع غذایی و تکنولوژی، دانشگاه آزاد اسلامی، تهران، ایران

*درس مکتوب: کرج، مرکز تحقیقات گیاهان دارویی، پژوهشگاه گیاهان دارویی جهاد دانشگاهی

منبع: صدریپور: ۱۳۷۷-۶۲۷۸، تل: ۰۹۰۲۱۹۴۴۴۳، الی：۰۲۱۳۷۷۲۴۴۴۳، پست الکترونیک: naghddie@yahoo.com

تاریخ پذیرش: ۹۸/۴/۱۸

چکیده

مقدمه: عملیات پیش خشک کردن و روش‌های خشک کردن کردن تأثیر قابل توجهی بر میزان و ترکیبات اساس گیاهان دارویی دارد.

هدف: تأثیر عملیات پیش خشک کردن خشک کردن با خلاء بر میزان و ترکیبات اساس گیاه بلیمو در این تحقیق مورد بررسی قرار گرفت.

روش بررسی: این تحقیق به صورت یک آزمایش فاکتوریل در قالب طرح کاملاً تصادفی (الفبای انگلیسی) به کار برده شد. به این ترتیب، مطالعه یک باکس با (۱) عملیات پیش خشک کردن، (د) مدت خلاء و (ب) انگشتر (۲) روش خشک کردن در سه سطح شاهد (نمونه خشک نشده) و خشک کردن در سه سطح شاهد (نمونه خشک نشده) و خشک کردن در سه سطح شاهد (نمونه خشک نشده) و خشک کردن در سه سطح شاهد (نمونه خشک نشده) و خشک کردن در سه سطح شاهد (نمونه خشک نشده) و خشک کردن در سه سطح شاهد (نمونه خشک نشده) و خشک کردن در سه سطح شاهد (نمونه خشک نشده).

نتایج: نتایج نشان داد که بیشترین مقدار کروناپل مربوط به تیمار آرن کمتر با دمای ۵۵ درجه سانتی‌گراد با عملیات پیش خشک کردن می‌باشد. در حالی که بیشترین مقدار اساس حاصل خشک کردن با دمای ۴۵ درجه سانتی‌گراد به دو عملیات به دست آمده. بیشترین میزان مواد مصرفی‌های هیدروکربن و مواد مصرفی‌های ریزکنار و زارا در خشک کردن با دمای ۵۵ درجه سانتی‌گراد حاصل شد. بیشترین میزان سرتونین‌های هیدروکربن و سرتونین‌های اکسیژنلار و نرمال در دمای پایینتر خشک کردن مشاهده شد.

نتیجه‌گیری: به طور کلی نتایج نشان داد که خشک کردن بهتری بر میزان اساس است و ترکیبات موثر می‌باشد.

گل و ارغوان: اساس بلیمو، خشک کردن، زراتال. نرال

سال هجدهم، دوره چهارم، ویژه‌نامه ۱۲، ۱۳۹۸
مقدمه

به لیمو (Lippia citriodora (Palau) Kunth) درختچه ای به ارتفاع 1/5 تا 2 متر از خاکآباده شده و در مناطق آمریکای جنوبی و شبه‌قاره آمریکا که خواص درمانی معتقدی از آن گزارش شده است. این گیاه به طور سنتی در درمان انسال، نفخ، بروز، و رتابه‌بردار مورد استفاده قرار می‌گیرد و در مطالعات سلولی و حیاتی، خواص اکسیدانی، ضد اظهار، ضد سرطان و ضد میکرو‌بی‌ماری هنری نیز به اثبات رسیده است.[1] همچنین با توجه به اثرات ضد بakteریایی، ضد فارماکی و حشره‌کش این گیاه نیز از دسته‌ای استفاده از عصاره‌ها با عنوان نگهدارنده در صنایع عصاره‌برداری می‌باشد.

در این مقاله می‌پروکسیم تک‌گیاهی به نام Thymus daenensis Celak در سرده Thymus، قیمت‌های کربن‌آبی به عنوان پهلوگیری از نگهداری این گیاه به سبب میزان و ویژگی‌های آن و استفاده‌های آن در صنایع عصاره‌برداری و دستیابی به انبوه مواد مولکولی از گیاهان‌های انسانی مورد بررسی قرار گرفته است.

تغییرات محیطی و ترکیبات اساسی...
راهنمای انجام و همکاران

کردن از جمله استفاده آن خلاه در دماهای مختلف خشک شدن و از نظر میزان و ترکیبات اساسی و رنگی‌های برگ مورد آزمایی قرار گرفتند.

مواد و روش‌ها

تهیه مواد آزمایشی

این آزمایش با هدف بررسی تاثیر پیش خشک کردن و استفاده از خلاء بر مقدار رنگ‌های گیاهی، میزان و اجزای اساسی گیاه به‌کارگیری در آزمایشگاه‌های تحقیقاتی دانشگاه آزاد اسلامی واحد علم و تحقیقات انجام شد.

بر گیاهان با کد هیرابومی (MPIH) 1345 از پژوهشکده گیاهان دارویی جهاد دانشگاهی واقع در کیلومتر 55 اتوبان تهران قرار با طول فشاری 145 و عرض جغرافیایی 53 35 و ارتفاع 1246 متر از سطح دریا در ساعت 8 برمی‌شد. این آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو فاکتور و سه تکرار اجرا شد. فاکتور اول (پیش خشک کردن) شامل 2 سطح پیش خشک کردن (قرار دادن برگ‌های نازه در معرض آن آب به مدت 3 ساعت و سپس اعمال تیمارهای خشک کردن) و خشک کردن پلاک‌الپس از برداشت تحت تیمارهای مورد مطالعه بود. فاکتور دوم (روش خشک کردن) شامل 2 سطح خلاء در سه دمای 35 و 55 درجه سانتی‌گراد با فشار 0.15 بار، خشک کردن در سایه و شاد (نمودن خشک شده) بود. به معنی خشک کردن نمونه‌ها در آرون خلاء، گرم 55 درجه سانتی‌گراد برداشت نمونه‌ها به صورت لایه‌ای تا زاگی در طبقات مختلف خلاء دلالات با فشار خلاء 500 میلی‌بار تحت شرایط دماهای 35 و 55 درجه سانتی‌گراد قرار گرفتند. در کلیه آزمایش‌ها تست‌گاه آرون 30 دقیقه قبل از شروع آزمایش روش شده و پس از رسیدن دمای آرون به دمای تنظیم شده، نمونه‌ها جهت انجام آزمایش داخل آرون قرار گرفتند. جهت خشک کردن در سایه، تیم 500 گرم به روش ارائه گیاه به‌کارگیری در فضای اتاق با بهره‌مندی مناسب در دمای 35 درجه سانتی‌گراد روی پارچه‌های تیز بهینه و خشک شدند.

راهنمای انجام و همکاران

توضیح میزان رطوبت قبل از آغاز آزمایش میزان رطوبت گیاهان برداشت شده با روش آون تغییر شده. برای این منظور 100 گرم از برگ‌های گیاه به صورت خرد شده به بغلان تقطیر یک لیتری منتقل و بر روی آن، آزمایش آب متغیر اضافه شده که به سوم حجم بالا را

میزان کاروتئین و کلروفیل

به منظور اندازه‌گیری کلروفیل و کاروتئیند از روش آرون استفاده. بدین منظور مقدار نم گرم از ماده گیاهی در هاونچی خرد شده. جهت استخراج رنگ‌های 20 میلی لیتر استثنایی به مهونه اضافه شده و با سرعت 600 دور در دقیقه سانتریفگور شد. مقداری از محلول روبی داخل کرت اسپیکروتومتر ریخته شد و در طول موج‌های 400، 410 و 663 نانومتر خوانده شد. مقدار کلروفیل a و b کاروتئیند

مطابق روابط ذیل بر حسب میلی‌گرم بر گرم محاسبه شد:

راهنمای 1

Chlorophyll a = 12.7 (A663) – 2.69 (A645) × \(\frac{v}{1000 \times W} \)

راهنمای 2

Chlorophyll b = 22.9 (A645) – 4.68 (A6663) × \(\frac{v}{1000 \times W} \)

راهنمای 3

Carotenoid = 7.6 (A480) – 1.49 (A510) × \(\frac{v}{1000 \times W} \)

در روابط فوق v حجم عصاره مصرف شده و W وزن نمونه می‌باشد.

استخراج اساس از برگ‌های گیاه

در این تحقیق برای استخراج اساس برگ گیاه، از روی تقطیر با آب و سپس گیاه کلروفیل استفاده شد. برای این منظور 100 گرم از برگ‌های گیاه به صورت خرد شده به بغلان تقطیر یک لیتری منتقل و بر روی آن آماده آب متغیر اضافه شده که به سوم حجم بالا را

Chlorophyll = 12.7 (A663) – 2.69 (A645) × \(\frac{v}{1000 \times W} \)
نتایج
مقدار رنگ‌های گیاهی
بر اساس اطلاعات ارائه شده در جدول شماره 1، مقدار
کاراکتر a و b کل و همچنین میزان کارتنوتوندی در سطح
1/5 تحت ناحیه عملیات پیش خشک کردن و در سطح
1/1 تحت ناحیه روش خشک کردن قرار گرفته‌اند. اثر متقابل عملیات پیش

مشخصات دستگاه‌های کروموماتوگرافی مختص به طیف‌سنج
GC/MS
دستگاه‌های کروموماتوگرافی مختص به طیف‌سنج Agilent 6890
به‌طور جداکننده در دو دستگاهِی
Agilent 5973 و Agilent 6890 به‌طور جداکننده در دو دستگاهِی

نتیجه و تحلیل آماده
محاسبات آماری‌های حاصل از آزمایش با استفاده
از نرم‌افزار SAS و مقایسه میانگین‌ها با آزمون دیده‌بان
Duncan (Excel) در سطح احتمال 0/05 درصد صورت گرفت و
(Excel) استفاده‌شده.

Analisی کیفی
به‌منظور شناسایی ارائه‌ها تشکیل دهنده اسم و بررسی
تغییرات آنها در روش‌های مختلف خشک کردن، دستگاه‌های
کروموماتوگرافی مختص به طیف سنج جرمی و کاز
کروموماتوگرافی مورد استفاده قرار گرفتند.

مشخصات دستگاه‌های کروموماتوگرافی (GC)
Younglin Acme 6000
جهاز به دستور FID و با سنتوی طول
30 متر، قطر داخلی 0/25 میلی‌متر و ضخامت لایه
0/25 میکرومتر مورد استفاده قرار گرفت. برای طیف‌سنج
سانتی‌گراد، تغییر دما بین 120-130 درجه سانتی‌گراد با
سرعت 3 درجه در دقیقه، و 130–170 درجه سانتی‌گراد با
سرعت 5 درجه در دقیقه، 3 دقیقه دما نسبت 70/3 درجه سانتی‌گراد
سانتی‌گراد و دام‌محفوره تریک 180 درجه سانتی‌گراد انجام
شد. از گاز هیلیوم به عنوان گاز حامل با سرعت جریان (فلو) 1
ملی‌لیتر در دقیقه استفاده شد. برای شناسایی ترکیبات
تشکیل‌دهنده اسانس، از اتاق تریک 1 میکرو لیتر نمونه رقیق
شده اسانس به نسبت 100 می‌گران نرم‌ال به دست‌گاه
کروموماتوگرام به دست آمد و طیف‌های جرمی کاز
مختلف موجود در آن بررسی شد. شناسایی طیف‌های به کمک
بانک اطلاعات جرمی، زمان به‌دلیل محاسبات اندیس کواتس،
طلقه طیف‌های جرمی کاز از ارایه اسانس و بررسی
الگوهای شکست آنها را نمایش داده‌اند با طیف‌های استاندارد
موجود در کتابخانه کامپیوتر دستگاه و معنی‌گذار صورت
گرفت. درصد کمی هر ترکیب بر اساس سطح زمین‌نگی و
توسط برنامه کامپیوتری نشان‌شده [15، 16].

تجزیه و تحلیل آماری
محاسبات آماری‌های حاصل از آزمایش با استفاده
از نرم‌افزار SAS و مقایسه میانگین‌ها با آزمون دیده‌بان
Duncan (Excel) در سطح احتمال 0/05 درصد صورت گرفت و
(Excel) استفاده‌شده.

اهداف‌ها
1. اعمالی ارائه شده در جدول شماره 1، مقدار
کاراکتر a و b کل و همچنین میزان کارتنوتوندی در سطح
1/5 تحت ناحیه عملیات پیش خشک کردن و در سطح
1/1 تحت ناحیه روش خشک کردن قرار گرفته‌اند. اثر متقابل عملیات پیش

شا ل هجدم، دره چهارم، وزنه‌امه 13، پاییز 1388
مشخصات کردن و روش مشخص کردن بر مقدار نگین‌های گیاهی
در سطح 1 درصد معنی‌دار بود.

در بررسی اثر متقابل روش مشخص کردن و عملیات پیش
مشخص شد، مقدار کارفلیل در
نمونه‌های مشخص کردن شده توسط آن خلاء با دمای 45 درجه
ساتئیت گرد که عملیات پیش مشخص کردن بر آنها انجام گرفته
بود حاصل شد. عدم اعمال عملیات پیش مشخص کردن بر روی
نمونه‌های مشخص کردن در دمای 65 درجه ساتئیت گراد منجر به
کاهش معنی‌داری نگین‌های گیاهی شده بود. در صورت مشخص
کردن نمونه‌ها در دمای‌های کمتر (دمای‌های 25 و 45)، عملیات
پیش مشخص کردن بر میزان نگین‌های گیاهی تأثیر معنی‌داری
نداشت، به طوری که در نمونه‌های مشخص شده تحت دمای
45 و 65 درجه ساتئیت گراد، میزان نگین‌های گیاهی در دور
شیرایی پیش مشخص کردن و عدم انجام آن از خلاف معنی‌داری
مشاهده نشد. نمونه مشخص شده در سایه و نمونه برج نازه از
کمترین مقدار نگین‌های گیاهی برخوردار بودند و عملیات
پیش مشخص کردن بر مقدار نگین‌های نمونه‌های مذکور از
معنی‌داری به همراه نداشت (جدول شماره 2).

جدول شماره 1: تجزیه و تحلیل اثر عملیات پیش مشخص کردن و روش مشخص کردن بر میزان نگین‌های گیاهی و اساس گیاه دارویی پاییز

<table>
<thead>
<tr>
<th>C.V.</th>
<th>مشخص کردن</th>
<th>مکان تغییرات</th>
<th>روش مشخص کردن</th>
<th>پیش مشخص کردن</th>
<th>X (آزمایش)</th>
<th>C.V.</th>
<th>تغییرات</th>
<th>X (آزمایش)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>31/241**</td>
<td>6</td>
<td>1</td>
<td>31/241**</td>
<td>32/241**</td>
<td>1/009**</td>
<td>0/009</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1/009**</td>
<td>8</td>
<td>1</td>
<td>1/009**</td>
<td>1/009**</td>
<td>1/009**</td>
<td>1/009**</td>
<td>4</td>
</tr>
</tbody>
</table>

* به ترتیب معنی‌دار در سطح 1 درصد، 5 درصد و غیرمعنی‌دار.
<table>
<thead>
<tr>
<th>کاروتئین (mg/g)</th>
<th>کاروتئین (mg/g)</th>
<th>کاروتئین (mg/g)</th>
<th>تلقیه</th>
<th>ورودی</th>
<th>برنامه‌کننده</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/0.01</td>
<td>12.8/4</td>
<td>13.6/4</td>
<td>a.8</td>
<td>O 2 -</td>
<td>46</td>
<td>F</td>
</tr>
<tr>
<td>13/0.8</td>
<td>11/0.4</td>
<td>19/0.4</td>
<td>+</td>
<td>9 +</td>
<td>9 +</td>
<td></td>
</tr>
<tr>
<td>8/0.4</td>
<td>16/0.4</td>
<td>17/0.4</td>
<td>*</td>
<td>+</td>
<td>9 +</td>
<td></td>
</tr>
</tbody>
</table>

جدول شماره 2- مقایسه بیانگین اثر متقابل عملیات پیش خشک و روش خشک کردن بر رنگ‌های چای، با استفاده از کاروتئین (mg/g) | کاروتئین (mg/g) | کاروتئین (mg/g) | تلقیه | ورودی | برنامه‌کننده | کنترل |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15/0.01</td>
<td>12.8/4</td>
<td>13.6/4</td>
<td>a.8</td>
<td>O 2 -</td>
<td>46</td>
<td>F</td>
</tr>
<tr>
<td>13/0.8</td>
<td>11/0.4</td>
<td>19/0.4</td>
<td>+</td>
<td>9 +</td>
<td>9 +</td>
<td></td>
</tr>
<tr>
<td>8/0.4</td>
<td>16/0.4</td>
<td>17/0.4</td>
<td>*</td>
<td>+</td>
<td>9 +</td>
<td></td>
</tr>
</tbody>
</table>

اگر عبارتی باشد این عبارت در جدول شماره 3 حذف شده و موارد دیگر در جدول شماره 2 حذف نشده است.

در حالی که بر موارد مونترنیون‌های هیدروکرنیون، مونترنیون‌های اکسیژن‌دار و سرکوتون‌های اکسیژن‌دار، تأثیر معناداری نداشت، روش‌های مختلف خشک کردن بر مقدار مونترنیون‌های هیدروکرنیون، مونترنیون‌های اکسیژن‌دار، سرکوتون‌های اکسیژن‌دار، سرکوتون‌های ورودی شدن اثر متقابل روش خشک در سطح 1/2 ناپذیر معناداری داشت. اثر متقابل روش خشک در سطح 1/2 ناپذیر معناداری داشت. این نتایج نشان می‌دهد که افزایش میزان سرکوتون‌تین به خشک کردن را در سطح 1/2 ناپذیر معناداری داشت.
توجه واریانس عملیات پیش خشک و روش خشک کردن برابری های ابزاری گیاه، دارویی، پیچ و خشک

جدول شماره ۳- تجزیه واریانس عملیات پیش خشک و روش خشک کردن برابری های ابزاری گیاه، دارویی، پیچ و خشک

متغیرهای عملیات	پیش خشک	روش خشک کردن	درجه آزادی	C.V.	
مویونترین های	2/5973***	2/5973***	2	29.53	0.49***
هیدروکربنر	2/5973***	2/5973***	2	29.53	0.49***
سرکوئین	2/5973***	2/5973***	2	29.53	0.49***
اکسید (C.V)	2/5973***	2/5973***	2	29.53	0.49***

جدول شماره ۴- مقایسه میانگین از متغیرهای عملیات پیش خشک و روش خشک کردن برابری های ابزاری گیاه، دارویی، پیچ و خشک

<table>
<thead>
<tr>
<th>سرکوئین</th>
<th>مویونترین های</th>
<th>هیدروکربنر</th>
<th>میانگین</th>
<th>روش خشک شدن</th>
<th>پیش خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/604</td>
<td>14/604</td>
<td>14/604</td>
<td>14/604</td>
<td>14/604</td>
<td>14/604</td>
</tr>
</tbody>
</table>

توجه واریانس عملیات پیش خشک کردن بر میزان مویونترین های هیدروکربنری، مویونترین های اکسید (C.V) و سرکوئین ترین های در سطح ۱ درصد تأثیر معنی‌دار داشت ولی بر سرکوئین ترین های اکسید (C.V) اثر معنی‌داری مشاهده نشد (جدول شماره ۴). بر اساس اطلاعات آرا، شده بود، برای تهیه نتایج، در حالت کمی، سانتی‌گراد حاصل شد. در حالت که بیشترین میزان سرکوئین ترین ها از نمونه‌های پیش خشک شده و سپس خشک شده تاریکی شد.
بررسی تغییرات ترکیبات تشکیل‌دهنده اساس گیاه‌های دارویی

در سطح 1 درصد و مقدار لیمونوم در سطح 5 درصد تحت تاثیر عمليات پشش خشک شدن کرون قرار گرفته در حالی که بر سایر ترکیبات نظر نهاد. اثر معنی‌دار مشاهده نشد. شرایط خشک شدن کرون کلیه ترکیبات مذکور غیر از لیمونوم را در سطح 1 درصد تحت تاثیر قرار داد و اثر متقابل این دو عامل بر لیمونوم و نرال در سطح 1/2 درصد نتایج گزارش نشد. با توجه به جدول شماره 4، بیشترین و کمترین میزان لیمونوم به ترتیب از گیاهان خشک شده در دماهای 35 درجه سانتی‌گراد همراه با عملیات پشش خشک شدن و دماهای 25 درجه سانتی‌گراد همراه با عملیات پشش خشک شدن حاصل شد. مقدار ترکیب لیمونوم گیاهان خشک شده در دماهای 35 درجه سانتی‌گراد پس از اعمال عملیات پشش خشک شدن به طور معنی‌دار افزایش یافت، در حالی که برای نمونه‌های خشک شده تحت دماهای 45 درجه سانتی‌گراد نتایج عکس حاصل شد. در نمونه‌های خشک شده در سایه و کنترل (تازه)...

جدول شماره 5 - تجزیه واریانس عمليات پشش خشک و روش خشک کرون بر ترکیبات تشکیل‌دهنده اساس گیاه دارویی برای

<table>
<thead>
<tr>
<th>C.V.</th>
<th>متغیر تغییرات</th>
<th>پشش عشخانه</th>
<th>کرون</th>
<th>عمليات پشش خشک و روش خشک کرون</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>مقدار</td>
<td>1/2/1/2</td>
<td>0/1/2/1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>لیمونوم (1)</td>
<td>0/1/2/1/2</td>
<td>1/2/1/2/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>نرال (2)</td>
<td>1/2/1/2/1</td>
<td>0/1/2/1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>زرناهلا (3)</td>
<td>1/2/1/2/1</td>
<td>0/1/2/1/2</td>
<td></td>
</tr>
</tbody>
</table>

ملاحظه: مربوطات
18 میلیون
(1) کروموک (1)
(2) اسپرون (1)
(3) کارفوکال (1)

سال هجدهم، دوره پنجم، نسخه دوم، 1/2/1/2، 1398 2020
جدول شماره ۶- مقایسه بیانگین از نهایی عملیات بیش خشک و روش خشک کردن بر میان نتایج ترکیبات تشکیل دهنده استانس گیاه دارویی بیلیمو

<table>
<thead>
<tr>
<th>کلوبرفیل</th>
<th>اسپتولون</th>
<th>کورکومین آر (%)</th>
<th>وزنیال (%)</th>
<th>نرمال (میول) (%)</th>
<th>روش خشک کردن</th>
<th>خشک کردن</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳/۷۷۶</td>
<td>۳/۴۳۱</td>
<td>۴/۲۳۳۵۲۵</td>
<td>۳۱/۶۸۷۵</td>
<td>۱۲/۷۵۳۵</td>
<td>آون خلاصه ۴۶</td>
<td>پیش خشک</td>
</tr>
<tr>
<td>۳/۷۵۸</td>
<td>۳/۴۱۹۱۹</td>
<td>۴/۲۱۹۵۵۰</td>
<td>۳۱/۶۷۵۵</td>
<td>۱۲/۸۱۵۴</td>
<td>آون خلاصه ۴۵</td>
<td>پیش خشک</td>
</tr>
<tr>
<td>۳/۷۲۷</td>
<td>۳/۴۳۱۹۱</td>
<td>۴/۲۱۹۳۵۰</td>
<td>۳۱/۶۷۵۵</td>
<td>۱۲/۸۱۵۴</td>
<td>آون خلاصه ۵۵</td>
<td>پیش خشک</td>
</tr>
<tr>
<td>۳/۷۰۴</td>
<td>۳/۴۰۳۴۶</td>
<td>۴/۲۱۹۳۵۰</td>
<td>۳۱/۶۷۵۵</td>
<td>۱۲/۸۱۵۴</td>
<td>آون خلاصه ۵۵</td>
<td>پیش خشک</td>
</tr>
</tbody>
</table>

توجه زیر باید داشته باشد: برای گیاهان خشک شده توسط معادن خشک کردن، و اهمیت رنگ نموده‌های خشک شده میزان رنگ‌های گیاهی نیز از اهمیت خاصی برخوردار است. در تحقیق انجام شده توسط معادن خشک کردن و همکاران (۲۰۱۴) مشخص شد کلروفیل به گرما حساس بوده و با یکی از این

بحث

با توجه به استفاده مستقیم برخی گیاهان خشک شده تا به مصرف کردنگاهان و اهمیت رنگ نموده‌های خشک شده میزان رنگ‌های گیاهی نیز از اهمیت خاصی برخوردار است. در تحقیق انجام شده توسط معادن خشک کردن و همکاران (۲۰۱۴) مشخص شد کلروفیل به گرما حساس بوده و با یکی از این

منابع

Changes in the Essential Oil Content and Composition of *Lippia citriodora* under Vacuum Oven-drying and Pre-drying Operation

Rezvani Aghdam Ali¹, Naghdi Badi Hasanali²*, Abdossi Vahid¹, Hajiaghaee Reza², Hosseini Seyyed Ebrahim³

1- Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
3- Department of food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
* Corresponding author: Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O.Box: 31375/1369, Karaj, Iran
Tel: +98-26-34764010, Fax: +98-26-34764021
Email: Naghdibadi@yahoo.com

Abstract

Background: Pre-drying operations and drying methods have a significant effect on the quantity and quality of plants essential oils.

Objective: In this study, the effect of pre-drying operation and vacuum oven-drying was investigated on the essential oil content and composition of *Lippia citriodora*.

Method: This research was conducted as a factorial experiment in a completely randomized design (CRD) with three replications. The two studied factors were (1) pre-drying operations in two levels including pre-drying and without pre-drying operation, and also (2) drying methods in 5 levels including fresh plant, shade drying and vacuum oven-drying at 35, 45 and 55°C at 0.5 bar atmospheric pressure. In this study, the amount of pigments and essential oil content and composition were measured.

Results: The results indicated that the highest chlorophyll content was related to treatment of vacuum oven-drying at 55 °C with a pre-drying treatment, while the highest amount of essential oil was obtained by vacuum oven-drying at 45 °C without a pre-drying operation. The highest amounts of monoterpene hydrocarbons, oxygenated monoterpenes, and geranial were obtained by drying at 55 °C, while the highest content of sesquiterpene hydrocarbons, oxygenated sesquiterpenes and neral were observed in Low-temperature drying.

Conclusion: In general, this study indicated that vacuum oven-drying at 45 °C was the best drying method for obtaining maximum content of essential oil and active components.

Keywords: *Lippia citriodora*, Chlorophyll, Drying, Essential Oil, Geranial, Neral