بررسی اثر مخلوط عصاره‌های گیاهان عناب، کاسنی و خار مرم بر موش‌های صحرایی مبتلا به کبد چرب غیرالکلی

مژگان محمدی فر1 محسن تقي‌زاده1 علیرضا عابد2 علی سلطانی3 امیدرضا تمتاجی3 ظاهره خامچیان4

اعلیرضا حاتمی، سید علیرضا طلایی5

چکیده

مقدمه: بیماری کبد چرب غیرالکلی طبیعی از آسب‌های کبیدی از استاتوس تا سیروز کبدی را شامل می‌شود. اگرچه شیوع این بیماری در جهان رو به افزایش است، با این حال هنوز درمان مناسبی برای آن وجود ندارد.

هدف: در این مطالعه به بررسی تأثیر مخلوط عصاره‌های گیاهان عناب، کاسنی و خارمرم بر کبد چرب غیرالکلی ایجاد شده با رژیم غذایی پرچرب در موش‌های صحرایی پرداخته شده است.

روش بررسی: در این مطالعه جبری از 20 موش صحرایی ترغیب شده. 8 موش به عنوان کنترل منفی در نظر گرفته شد و یک حیوان از 22 موش با کیفی پرچرب نوده شدند. از 2 ماه تغذیه با رژیم پرچرب، موش‌های مثل با کیفی پرچرب گروه‌ها آغاز به ساخته شد. 4 گروه 8 تایی شامل گروه نوده با رژیم پرچرب و 4 گروه دریافت کننده رژیم پرچرب به همراه عصاره‌بندی با دوزهای 100، 200 و 400 میلی‌گرم بر کیلوگرم وزن تنظیم و به مدت 2 ماه تحت تیمار با عصاره قرار گرفتند. در پایان پروتاکل لیدین. نتایج آزمایش‌های کبیدی و بافت کبد در آزمایش قرار گرفت.

نتایج: دریافت رژیم پرچرب موجب افزایش مقادیر کلسترول تام، تری‌گلیسرید و LDL می‌شود. و کاهش HDL شد. ممکن است باعث افزایش تغییرات آزمایش‌های کبیدی و تجمع چربی در بافت کبد شد. دریافت عصاره به صورت واپسی به دوز موجب بهبود وضعیت لیپیدها باعث شد. خاصیت آب‌پذیری کبدی کبد تغییرات ناشی از رژیم غذایی پرچرب و درمان باعث شد.

توصیه گری: نوده‌ی با رژیم پرچرب سپس ایجاد کبد چرب غیرالکلی شده و تیمار باعث ترکیب گیاهان عناب، کاسنی و خارمرم باعث بهبود پروتاکل لیدین، تغییرات آزمایش‌های کبیدی و آسیب بافت کبدی در موش صحرایی با نوده‌ی رژیم پرچرب شد.

گل و از گزان: عناب، کاسنی، خار مرم، بیماری کبد چرب غیرالکلی، رژیم غذایی پرچرب

تاریخ پذیرش: 97/9/17

پست الکترونیک: talaei@kaums.ac.ir

1- مرکز تحقیقات بیوشیمی و تغذیه در بیماری‌های متابولیک، پژوهشکده علوم پزشکی کاشان، کاشان، ایران
2- مرکز تحقیقات طیفولوژی، پژوهشکده علوم پزشکی کاشان، کاشان، ایران
3- گروه تحقیقات طیفولوژی، دانشگاه علوم پزشکی کاشان، کاشان، ایران
4- مرکز تحقیقات گیاهان دارویی شرکت داروسازی بیارس، کاشان، ایران
5- ادرس مکاتبه: کاشان، بلوار فابل راز، ایلام، دانشگاه علوم پزشکی کاشان، پژوهشکده علوم پزشکی کاشان، پژوهشکده علوم پزشکی کاشان، مرکز تحقیقات طیفولوژی، ان‌پی‌اس‌پی

DOI: 10.29252/jmp.4.72.S12.133
مقدمه

در طب چینی و ایرانی به عنوان داروی برای درمان اختلالات کبدی و کم خونی استفاده می‌شده است. [7] این گیاه می‌تواند بر ازاریسم دیابتیسم، فعال شدن سیکلکسیتری‌زائی (CST) و فعالیت‌های کولین استراز اثر مهاری داشته باشد و همچنین گزارش کردانه که عناب از بافت کبد در مقابل تراکرک بر می‌رود حفاظت می‌تواند. [8] در مطالعاتی که بر روی ارزش میتوانیم به شدتی سرعت استقامت لازم نشان‌داد که پودرنی از می‌تواند کلسترول سرم را کاهش دهد. [9] همچنین نشان داده شده است که عنا عناب می‌تواند برکاتی داسیمیون لیپید و استرس اکسیدوژن را در بیماران دیابتی کاهش دهد. [10] مطالعات مختلف ویژگی‌های دارویی

مواد و روش‌ها

чиوند: این مطالعه تجربی بر روی 20 موس موس‌های حیوانی نر نژاد ویستار با مقدار وزنی 250-300 گرم انجام گرفت. حیوانات در شرایط استاندارد (درجه حرارت 22 ± 2 درجه سانتی‌گراد)

جدول شماره‌1: ترکیبات سازنده رژیم غذایی پرچرب

<table>
<thead>
<tr>
<th>ترکیب مورد استفاده (درصد وزنی)</th>
<th>مقدار (درصد وزنی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پودر غذایی جوندگان</td>
<td>28</td>
</tr>
<tr>
<td>کره غندم</td>
<td>28</td>
</tr>
<tr>
<td>ساکوراز</td>
<td>12</td>
</tr>
<tr>
<td>زرد ذخیره</td>
<td>19</td>
</tr>
<tr>
<td>سفیده ذخیره</td>
<td>11</td>
</tr>
</tbody>
</table>

پایه جوندگان با گویسفندی و ساکوراز مخلوط می‌شد (جدول شماره‌1). (سیسم تریچ هسته: نمونه Nucleodur سنتر تریچ هسته: نمونه Nucleodur سنتر تریچ هسته: نمونه Nucleodur سنتر تریچ HPLC معکوس میکروست مبتنی شده نشده و به کمپ چرب شایع‌های پویسیمیا و یافته کد سنجیده شد.

سال هجدهم، دوره چهارم، شماره 12، 2018 1398
نتایج

آزمایشات خونی:

ALT = SGPT
AST = SGOT
ALP
LDL
HDL

دلتنش‌های بیوشیمیایی در یک چهارم مطالعه به منظور بررسی شاخص‌های بیوشیمیایی شامل: میزان تری کلسترول، (TG) گلسرید، (LDL) لپیدروپتین‌های دانشی، (HDL) و میزان فعالیت سرمی آنزیم‌های کبدی شامل آنزیم‌های ترانسامیات (ALT = SGOT) و (AST = SGOT) آنتی‌لیپیدین (ALP) پس از 20 دقیقه انکوباسیون در آزمایشگاه به مدت 10 دقیقه به دست آمد. پس از 2 هفته با روغن مایع، داشتند. آزمایش‌های دکتر شهید به روش روشی واژه‌ای استفاده از کیهانی تجزیه در Bicosino Biotechnology Company (Beijing, China) دستگاه نواهد ایرا (Awareness, USA) در MS361 و 907202020 جهت بررسی تغییرات بیوشیمیایی با نرم‌افزار SPSS 16 تحلیل‌دهی شد. تغییرات بافتی بر اساس میزان تجمع‌چری به دیدی که این صورت درجه یکی صفر (P < 0.05) در مقایسه گروه کنترل گزارش شد. مطالعه با نرم‌افزار SPSS 16 با چهار آنتی‌لیپیدین و ارایان Tukey انجام شد. جهت آزمایش‌های بیوشیمیایی از آزمون نیویکسکال والیس استفاده شد. داده‌ها به صورت انحراف استاندارد...
تهمات پاتولوژیک بایستی بررسی شوند. نشان داد که بایستی کبد در موسی های استخوان تنگاتری گردد (شکل شماره 1). این در حالت است که رژیم غذایی پرچرب سبب تجمع جریه در هیپوپتیمی حسی و اکثریت های ریز و درشت شود. پینت به گروه کنترل مشابه (نتیجه همگنی در بانک کبد موشهای فوقانی گردد. نشان داد که تجمع سولئیه، تاثیر کودکی، اوکزیکی های جریه و درجه استئاتوز و کاهش انرژی دیده نشد. اما در موسی لیپید تاثیر کاهش تعداد اوکزیکی های جریه و درجه استئاتوز و کاهش انرژی دیده نشد. (P < 0.05). در موسی های گردهاراه تاثیر معنی‌داری بر استئاتوز کبد نداشت (P > 0.05). جدول شماره 2.

نتیجه‌گیری‌ها:

- موشهای سریال و LDL.Chr.TG در سرم (ALP و AST, ALT) میزان فعالیت انزیم‌های کبدی (ALP و AST, ALT) میزان فعالیت ارزیابی با رژیم پرچرب (P < 0.05).

- میزان تعداد سلول‌های غلافی در هیپوپتیمی حسی و اکثریت های ریز و درشت شود. پینت به گروه کنترل مشابه (نتیجه همگنی در بانک کبد موشهای فوقانی گردد. نشان داد که تجمع سولئیه، تاثیر کودکی، اوکزیکی های جریه و درجه استئاتوز و کاهش انرژی دیده نشد. اما در موسی لیپید تاثیر کاهش تعداد اوکزیکی های جریه و درجه استئاتوز و کاهش انرژی دیده نشد. (P < 0.05). در موسی های گردهاراه تاثیر معنی‌داری بر استئاتوز کبد نداشت (P > 0.05). جدول شماره 2.

- موشهای سریال و LDL.Chr.TG در سرم (ALP و AST, ALT) میزان فعالیت انزیم‌های کبدی (ALP و AST, ALT) میزان فعالیت ارزیابی با رژیم پرچرب (P < 0.05).

- میزان تعداد سلول‌های غلافی در هیپوپتیمی حسی و اکثریت های ریز و درشت شود. پینت به گروه کنترل مشابه (نتیجه همگنی در بانک کبد موشهای فوقانی گردد. نشان داد که تجمع سولئیه، تاثیر کودکی، اوکزیکی های جریه و درجه استئاتوز و کاهش انرژی دیده نشد. اما در موسی لیپید تاثیر کاهش تعداد اوکزیکی های جریه و درجه استئاتوز و کاهش انرژی دیده نشد. (P < 0.05). در موسی های گردهاراه تاثیر معنی‌داری بر استئاتوز کبد نداشت (P > 0.05). جدول شماره 2.

- موشهای سریال و LDL.Chr.TG در سرم (ALP و AST, ALT) میزان فعالیت انزیم‌های کبدی (ALP و AST, ALT) میزان فعالیت ارزیابی با رژیم پرچرب (P < 0.05).

- میزان تعداد سلول‌های غلافی در هیپوپتیمی حسی و اکثریت های ریز و درشت شود. پینت به گروه کنترل مشابه (نتیجه H}
نمودار شماره ۲: میزان فعالیت آنزیم‌های (ALP و AST=SGOT, ALT=SGPT) در سرم موش‌های صحراوی مقادیر به صورت میانگین ± انحراف استاندارد از میانگین گزارش شده است. *** اختلاف معنی‌دار شاخص‌های لیپیدی نسبت به گروه کنترل مشاهده شد (P<0.001). $%$ اختلاف معنی‌دار بین دوز ۲۰۰ و ۲۰۰۰ میلی‌گرم عصاره (P<0.05).

شکل شماره ۱- نمای رئیزی‌یز از یافته کبد (رنگ‌آمیزی همتوکسین- انسوزین: برگ‌نمایی ۱۰۰۰×): (A) گروه کنترل مشاهده شد: هایاتوستیا و ساختار کبدی طبیعی مشاهده گردید. (B) گروه دریافت کننده رژیم غذایی پرچرب: شکل و آکوکونه کبدی. (C) گروه دریافت کننده رژیم غذایی پرچرب و عصاره با دوز ۱۰۰ میلی‌گرم: تغییر کبدی که نسبت به گروه رژیم غذایی پرچرب مشاهده نمی‌شود. (D) گروه دریافت کننده رژیم غذایی پرچرب و عصاره با دوز ۲۰۰ میلی‌گرم: شکل نرمال کبدی با به‌کارگیری عصاره. (E) گروه دریافت کننده رژیم غذایی پرچرب و عصاره با دوز ۲۰۰۰ میلی‌گرم: کاهش عیار و آکوکونه کبدی نسبت به گروه رژیم غذایی پرچرب.
جدول شماره ۲- تأثیر عصاره گیاهان خار مرم، کنگرالنگی و عناه بر درجه استگنوز کبد در موش‌های صحراپی

<table>
<thead>
<tr>
<th>درجه استگنوز کبد</th>
<th>گروه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
</tr>
<tr>
<td>گروه فکنی</td>
<td>0</td>
</tr>
<tr>
<td>ژرم غذایی پرچرب</td>
<td>0</td>
</tr>
<tr>
<td>عصاره با وزن 100 میلی گرم</td>
<td>0</td>
</tr>
<tr>
<td>عصاره با وزن 200 میلی گرم</td>
<td>0</td>
</tr>
<tr>
<td>عصاره با وزن 400 میلی گرم</td>
<td>0</td>
</tr>
</tbody>
</table>

ارقام نشان‌دهنده تعداد موش‌های یا برده درجه از استگنوز می‌باشند. *P* ≤ 0.010 < *P* ≤ 0.050، نشان‌دهنده بی‌ربطی یا تجربه است.

بحث

بیماری کبد چرب غیرالگلی (NAFLD) به دلیل از جمله افزایش شروع چاقی و سدروم متابولیک در حال تبدیل شدن به یکی از مهم‌ترین بیماری‌های کبیدی است [15]. تجمع چرب در کبد می‌تواند ناشی از عدم تبدیل ترکیبی یا تجزیه لیپید‌ها و یک دلیل اختلالات متابولیزمی رخ دهد. استرس عناه، سیتوکین و سایر عوامل پیش افتاده ممکن است تحریکی از طبقات استگنوز اولیه و افزایش غیرالگلی نشان دهد [13]. نتایج به دست آمده در این پژوهش حاکی از آن است که مصرف رژیم غذایی پرچرب سبب افزایش میزان HDL و LDL، TC، TG در موش‌های صحراپی می‌شود.

میزان کبد را بهبود یکسان

در مطالعات انجام شده، نشان داده شده است که به‌صورت افزایش گیاهان عناه در کبد، سریال و اسپلیت می‌تواند به وضوح میزان هدیه‌ای کبدی افزایش دهد و باعث بهبود لنفاژ‌های ویروسی گردیده شود. به‌طوری‌که در مطالعه استقلالی کبد، هم‌چنین تحقیق‌های مختلف نشان داده که خواص دراوری عصاره عناه به دلیل ویروس‌های آنتی‌کبدی مانند وشک و همکاران خواص ضدالتهابی عصاره دانه عناه را افزایش می‌دهد [16]. این اثرات ضدالتهابی و آنتی‌اسیدتیکی ناشی از فروسراف و رابطه‌ها با خاصیت در عصاره میده عناه عناه بیابانه [21] و در عصاره دانه عناه باعث بهبود گلکزیون و فوق‌فعلیتی لیپیدی می‌شود [22] در مطالعه شدن.

با توجه به این‌که موش‌های صحراپی در

ărăș 1398
Title:

Authors:

18. Shaker E, Mahmoud H and Mnaa S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food and Chemical Toxicol. 2010; 48 (3): 803 - 06.

Effect of Ziziphus jujuba Mill., Cichorium intybus L. and Silybum marianum (L.) Gaertn. Combination Extract on Non-alcoholic Fatty Liver Disease in Rats

Mohammadifar Mojgan¹, Taghizadeh Mohsen¹, Abed Alireza², Soltani Ali¹, Tamtaji Omidreza², Khamechian Tahereh³, Hatami Alireza⁴, Talaei Seyyedalireza²*

1- Biochemistry and Nutrition in Metabolic Diseases Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
2- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
3- Department of Pathology, School of Medicine, Kashan University Medical Sciences, Kashan, Iran
4- Barij Essence Medicinal Plants Research Center, Kashan, Iran
*Corresponding author: Kashan, Kashan University of Medical Sciences, Institute for Basic Sciences, Physiology Research Center
Tel: +98-913-3623240
Email: talaei@kaums.ac.ir

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) includes a range of liver damage from early steatosis to cirrhosis. Although NAFLD prevalence in the world is increasing, but there is no effective treatment for it.

Objective: The aim of this study was to evaluate the effect of combined extract of jujube, chicory and silymarin on NAFLD induced by high-fat diet (HFD) in rats.

Method: In this experimental study 40 male rats randomly were divided in two groups: a negative control group (n = 8) and a high-fat diet group (n = 32). After 4 months of feeding with HFD, rats were assigned into 4 groups (n = 8) including an HFD group and three groups receiving HFD and the extract at 100, 200 and 400 mg/kg for 2 months. Finally, lipid profile, liver enzymes activity and liver histology were investigated.

Results: High-fat diet increased cholesterol, triglyceride and LDL and decreased HDL levels (P<0.001). This diet also increased serum activity hepatic enzymes and lipid accumulation in liver tissue. Receiving the extract improved lipid profile and hepatic enzyme activity, dose-dependently. Histopathology of liver confirmed the change induced by HFD and protective effect of extract.

Conclusion: Treatment with combined extracts of jujube, chicory and silymarin improves high-fat diet (HFD) induced NAFLD in rats.

Keywords: Cichorium intybus, Silybum marianum, Ziziphus jujuba, High-fat diet, Non-alcoholic fatty liver disease