چکیده
مقدمه: آنزیم تیروزیناز در مکمل‌های اول ملائکه ای در پستانداران کاتالیز می‌کند و چنین واکنشی به سیاه‌شکافته‌گی آنزیم می‌دهد.

هدف: یافتن مهار کننده‌های قوی و خاصی عوارض کمر برای آن‌زم تیروزیناز در عصاره‌های گیاهی.

روش بررسی: در این پژوهش اثر مهاری عصاره‌ی میانولی 70 گونه گیاهی بر روی تیروزیناز قارچی سنجیده شده است. اثر مهاری عصاره‌ها در ظل فشار به تغییرات 400-430 و 6/7 میکروگرم در میلیلیتر نمود. نتایج در پذیرش:

Heptaptera anatolica Bongaria chrysogonum

Salvia suffruticosa Nonea hypoleia** Marrubium cuneatum Hypericum scabrum** Hyoscyamus kurdicus

و دو گیاه با غلظت 25 میکروگرم بر میلیلیتر شامل

Astragalus siliquosus subsp. siliquosus و Asperugo procumbens

عصاره‌ای گیاهی میکروگرم یونتای 97 درصد می‌باشد. میزان مهار آن‌زم توسط IC_{40} 62 میکروگرم در میلیلیتر نوع مهار سنجش‌زیستی پیدا کرده است. نتیجه‌گیری: عصاره هگزانی که میکروگرم یونتای (Salvia suffruticosa) به دلیل درصد مهار بالا و پایین می‌تواند با هدف

جداسازی و نعیض ماهیت عمال مهارکننده آن‌زم تیروزیناز قارچی، مورد استفاده قرار گیرد.

گل‌زارگان: تیروزیناز، مرمی، یونتای، مهار آنزیمی، هایپرپپتیماسیون

تاریخ پذیرش: 91/10/2

تاریخ دریافت: 91/04/20

مژراهی @ uok.ac.ir
مقدمه

تیروزیناز (Tyrosinase) (متوفول، ال-دیوآکسین) اکسیدوردکتانی (EC 1.14.18) از ماتوکاتوری‌ها و باعث عنصر مس و دارای چندین عملکرد است. تیروزیناز در ارتباط با یکی از سویستراها آن که اسیدامینه تیروزین (Tyrosine) دانسته شده است. این آنزیم تیروزین را به پیش ماده تیروزیناز در پستانداران است. و یکی قابل ملاحظه در تیروزینازات مختلف این است که به دلیل مس تولید می‌شود. [1]

تیروزیناز (Mushroom tyrosinase) نامیده شده و در قارچ روزانه و همپرهان، تیروزیناز مربوط به فنولریکنیک قرار گرفته. فاصله در این روزانه‌ها و پستانداران از یکی از گیاهان سویسترا ویژه‌ای است. این آنزیم تیروزیناز در پستانداران است. و یکی قابل ملاحظه در تیروزینازات مختلف این است که به دلیل مس تولید می‌شود. [2]

تیروزیناز (Melanogenesis) به عنوان یکی از قارچ‌ها، استخراج Agaricus bisporus Neurospora crassa شده و دو دیگری معمولاً و ستاره‌ای مورد مطالعه قرار گرفته‌اند. [1] بیشتر از تیروزینازا آن از جمله تیروزیناز انسانی، تیروزیناز قارچ خوراکی و نوروبورا کراسا استخراج می‌شود. [3]

تیروزیناز (Hyperpigmentation) و (Hypopigmentation) از قارچ‌ها، استخراج Agaricus bisporus Neurospora crassa شده و دو دیگری معمولاً و ستاره‌ای مورد مطالعه قرار گرفته‌اند. [1] بیشتر از تیروزینازا آن از جمله تیروزیناز انسانی، تیروزیناز قارچ خوراکی و نوروبورا کراسا استخراج می‌شود. [3]

تیروزیناز (Hyperpigmentation) و (Hypopigmentation) از قارچ‌ها، استخراج Agaricus bisporus Neurospora crassa شده و دو دیگری معمولاً و ستاره‌ای مورد مطالعه قرار گرفته‌اند. [1] بیشتر از تیروزینازا آن از جمله تیروزیناز انسانی، تیروزیناز قارچ خوراکی و نوروبورا کراسا استخراج می‌شود. [3]

تیروزیناز (Tyrosinase) نامیده شده و در قارچ روزانه و همپرهان، تیروزیناز مربوط به فنولریکنیک قرار گرفته. فاصله در این روزانه‌ها و پستانداران از یکی از گیاهان سویسترا ویژه‌ای است. این آنزیم تیروزیناز در پستانداران است. و یکی قابل ملاحظه در تیروزینازات مختلف این است که به دلیل مس تولید می‌شود. [2]
تحت نظرات آقای مهندس حسینی معاونی از مرکز تحقیقات کشاورزی استان کرمان جمع‌آوری و شناسایی شدند و برای هریک از نمونه‌ها شماره‌سازی سند در هزاره‌ی ۱۴۰۰ توسط افزودنی‌های آنتی‌کبیدنی، از اکسیداسیون آنتی‌زیمی از طریق مهار آنتی‌بروزانش جلوگیری نمود [۱۶]. آنتی‌بروزانش با اکسیداسیون ترکیبات فلئی، مسئول سیاست‌دهی آنتی‌زیمی بی‌سیم‌ها، سیفیاسی و قارچ‌ها است و این سیاست‌دهی از نامعلومی ظاهری دارد و به همین دلیل در صنایع غذایی ترکیبات در کنترل کیفی و اقتصادی بی‌سیم‌ها و سیفیاسی نش می‌دارد [۱۴، ۲۷]. پس همه‌ی این مطالعات مناسبات در بست‌نام و سیاست‌دهی آنتی‌زیمی در بی‌سیم‌ها و قارچ‌ها مطلوب تیپئی و این اثرات مطالعات باعث شویی محققان، برای یافتن مهارت‌های ترکیبات بی‌سیم‌ها و قارچ‌ها جلوگیری کرده و برای سفید کردن پوست از آنها استفاده نمود [۲۶]. کاهش فعالیت ترکیبات به عوامل روش ملاروزن گزارش شده است. همیاهمگانی‌سازی یک مشکل جدی زیبای محصول می‌شود و به دلیل ظرفیت زیبای نیاز شفیدی به مهارت‌های ترکیبات به مزار تدوم توسعه روی‌های درمانی و پیشگیری از اختلالات همیاهمگانی‌سازی وجود دارد تا پیوند ملاروزن را مهارت قند [۲۴، ۲۶، ۲۷]. دریافت محققان به دنبال مهارت‌های قوی ملاروزن از منابع طبیعی برای استفاده در لوزم آرامی و بهداشتی فستانه [۱۵، ۲۸، ۲۹]. دربیان عوامل روشن کننده پوست و عوامل بربط اندکی تکنیک پوستی منیزیم-ال-آسکوربیل-۲-سفات، هیدروکسی‌آنزول، ان-استیل-۳-سیس‌تمپینیل‌فنول، اربوتین، سالیسیل‌هیدروکسی‌کمیک اسید، دیبوتین اسید، کوژیک به اسید، هیدروکوژیک، آلتوئورید، نیسیناکتیک که به طور گسترده در صنایع آرامی و بهداشتی استفاده می‌شوند و در حال تجویز در سراسر جهان هستند [۱۶، ۱۹]. استفاده طولانی مدت از هیدروکوژیک در لوزم آرامی منجر به بی‌روش عوارض جانی از جمله تحملی پوستی و ایجاد جهش می‌شود. به همین دلیل استفاده از هیدروکوژیک در لوزم آرامی در انتخابی اروی ممنوع شده است و به شدت در ایالات متعدد توسط سازمان غذا و دارو (FDA) کنترل می‌شود [۸]. همچنین دیبوتین اسید برای درمان همیاهمگانی‌سازی اثرات خویش داشته اما عوارض جانبی مشابهی با هیدروکوژیک دارد به همین دلیل اینگونه روزافزون برای پی‌کردن جایگزین.
درجه سانتی گراد تغییرات می شود و پس از تخلیه از مخزن دستگاه جهت حساسیت کامل، روش پایین می شود. به نور و در دمای مکروپریپتریت ریدر بین 24 ساعت قرار می گیرند. عصاره های حساسیت کامل دارای یک گیاهان جمع‌آوری شده در این تحقیقات، کلسترول مواد موجود است. گیاهان باعث کاهش بروز قطعات بزرگ برخی داده می شوند. قطعات گیاهی حاصل بر روی کافذ قرار داده می شوند و برای جلوگیری از قرار گرفتن در معرض نوری آنها یا کافذ پوشش به شکن شده می شود. به روز ریک باعث قطعات گیاهی، به منظور تهویه و همچنین کنترل کیفیت روند شکن شدن جایگا می شود. طول مدت شکن شدن در گیاهان مختلف، تفاوت بود اما به طور متوسط در دمای آزمایشگاه طی سه تا چهار روز فرا می گیرد. شکن شدن کامل می شود. ابتدا نمونه از ناحیه عدم آلودگی به خاک و یا سایر گیاهان بررسی می شود.

انگاه بسیار فعالیت گیاهی باعث قطعات می شود. سپس بیولوژی اساسی خانواده طی سه تا پانزده روز نتیجگانی، پودر می شود. پودری هایی به دست آمده از توزین در ظروف تیره پلاستیکی و در دارای زمان عصاره گیری، در دمای اتاق نگهداری می شود. پودر گیاهی به میلی لیتری شدن، قرار گیرد. به دمای قرار گرفته، نور و شکن شده و به مدت 5 دقیقه در دمای اتاق انکوبه شد، سپس میکروسکوپی کنول (10 میلی متر) را به استفاده از دستگاه روتاری اواپراتور با دمای 55

جدول شماره 1 - تعریف ترکیبات با محوریان چاه‌که‌های گیاهان

<table>
<thead>
<tr>
<th>تست ماهور</th>
<th>تست پلاکت ملی</th>
<th>تست پلاکت ملی</th>
<th>تست پلاکت ملی</th>
</tr>
</thead>
<tbody>
<tr>
<td>عصاره</td>
<td>70 µl</td>
<td>70 µl</td>
<td>70 µl</td>
</tr>
<tr>
<td>آنزیم</td>
<td>30 µl</td>
<td>30 µl</td>
<td>30 µl</td>
</tr>
<tr>
<td>سوپراتا</td>
<td>110 µl</td>
<td>110 µl</td>
<td>110 µl</td>
</tr>
<tr>
<td>بافر</td>
<td>110 µl</td>
<td>110 µl</td>
<td>110 µl</td>
</tr>
<tr>
<td>کوجیک اسید</td>
<td>70 µl</td>
<td>70 µl</td>
<td>70 µl</td>
</tr>
</tbody>
</table>
چاهک‌ها اضافه کرده و به منظور هرهمزی شروع و اکتشافی. از سه مکروویلپریس 20 لیتری اکوپاسیون در دماه اتان درون دستگاه قرار گرفته و پس از 2 ثانیه هیض 492 ثانیه چاهک خالی، در طول موج 2002 نامورتراندازی شده و از جذب تهیه‌کننده کم شده. به دلیل احتیال و جواب عواملی از جمله هیدرولیز و فرخوخی سویسترآ و امکان حضور ترکیبات در عصاره که ممکن است در طول موج 492 نامورتر دارای جذب باشد، چاهک بلاک به صورت جداییتی تعبیر شد. چاهک بلاک های نامور می‌گیرد از آزمیت بوده و در واقع جذب عواملی مراحل سنجیده می‌شود و از جذب چاهک نتست کسر شد. به‌این دلیل در کدام از عصاره‌ها یک چاهک نتست و یک چاهک بلاک در نظر گرفته شد. همچنین، در این تدریج باعث شده که جذب تهیه‌کننده فقط در نسبت فعالیت آزمیت باشد.

برای تعیین نتیجه عصارهی و محاسبه‌ی مقادیر V_{max}، K_m و K_i که در صورت نمودار لیتوپرزتیک، در حضور عصارهی گیاهی و بدون حضور حصاره گیاهی (کنترل) در چهار غلظت متفاوت سویسترا رسم شد. محلول‌های سویسترا در چهار غلظت 10، 20، 40 و 80 میکروگرم در میلی لیتر به‌نیه شده‌اند. برای سنجش فعالیت آزمیت، مقادیر نتست و بلاک مطلق جدول شماره 1، انتخاب شدند و تمام سنجش‌ها در سه تکرار انجام شدند. جذب در طول موج 492 نامورتر بعد از گذشتن آن‌کوباسیون نتست شد. تمام محاسبات با استفاده از معادله‌ی خطر نمودار لیتوپرزتیک در نرم‌افزار Excel محاسبه شد.

بررسی سندرمیاتیک ماهر آزمیت لیتوپرزتیک در حضور عصارهی گیاهی با بالاترین درصد مهار

V_{max}, K_m, K_i را تعیین نمایند و محاسباتی مقایسه‌ی برای تعیین نتیجه عصارهی و محاسبه‌ی مقادیر V_{max}، K_m و K_i که در صورت نمودار لیتوپرزتیک، در حضور عصارهی گیاهی و بدون حضور حصاره گیاهی (کنترل) در چهار غلظت متفاوت سویسترا رسم شد. محلول‌های سویسترا در چهار غلظت 10، 20، 40 و 80 میکروگرم در میلی لیتر به‌نیه شده‌اند. برای سنجش فعالیت آزمیت، مقادیر نتست و بلاک مطلق جدول شماره 1، انتخاب شدند و تمام سنجش‌ها در سه تکرار انجام شدند. جذب در طول موج 492 نامورتر بعد از گذشتن آن‌کوباسیون نتست شد. تمام محاسبات با استفاده از معادله‌ی خطر نمودار لیتوپرزتیک در نرم‌افزار Excel محاسبه شد.
<table>
<thead>
<tr>
<th></th>
<th>1%</th>
<th>1%</th>
<th>3%</th>
<th>3%</th>
<th>5%</th>
<th>5%</th>
<th>10%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>
جدول شماره 3- فراوانی و درصد فراوانی چهار عصاره گیاهی در س گروه مهاری

جدول شماره 4- نهایت گیاهان دارای فعالیت مهار قوی
<table>
<thead>
<tr>
<th>ردیف</th>
<th>نام علمی گیاه</th>
<th>کد هربروری</th>
<th>خانواده</th>
<th>IC<sub>50</sub> (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Astragalus siliculosus Boiss. subsp. siliculosus</td>
<td>16820</td>
<td>Papilionaceae</td>
<td>2/15</td>
</tr>
<tr>
<td>2</td>
<td>Asperugo procumbens L.</td>
<td>7054</td>
<td>Boraginaceae</td>
<td>263/27</td>
</tr>
<tr>
<td>3</td>
<td>Bongardia chrysogonum (L.) Spach</td>
<td>3842</td>
<td>Podophyllaceae</td>
<td>35/875</td>
</tr>
<tr>
<td>4</td>
<td>Hyoscyamus kurdicus Bormm.</td>
<td>3277</td>
<td>Solanaceae</td>
<td>38/84</td>
</tr>
<tr>
<td>5</td>
<td>Heptapera anatolica (Boiss.) Tutin</td>
<td>516</td>
<td>Apiaceae</td>
<td>2/002</td>
</tr>
<tr>
<td>6</td>
<td>Hypericum scabrum L.</td>
<td>457</td>
<td>Guttiereae</td>
<td>2/47</td>
</tr>
<tr>
<td>7</td>
<td>Marrubium cuneatum Russell</td>
<td>457</td>
<td>Lamiaceae</td>
<td>1/8/69</td>
</tr>
<tr>
<td>8</td>
<td>Nonea hypoleia Bormm.</td>
<td>172</td>
<td>Boraginaceae</td>
<td>1/8/69</td>
</tr>
<tr>
<td>9</td>
<td>Salvia suffruticosa Month & Auch.</td>
<td>172</td>
<td>Lamiaceae</td>
<td>1/8/69</td>
</tr>
<tr>
<td>10</td>
<td>Scrophularia pruniosa Boiss.</td>
<td>916</td>
<td>Scrophulariaceae</td>
<td>1/7/87</td>
</tr>
<tr>
<td>11</td>
<td>Verbascum phoenicum L.</td>
<td>1230</td>
<td>Scrophulariaceae</td>
<td>1/2/80</td>
</tr>
</tbody>
</table>

تعیین مقدار IC₅₀

مقدار IC₅₀ یک ثابت بیاین یکی از میزان مهار می‌باشد که نشان دهنده غلظت بادارنده موردبازی برابر 50 درصد مهار گیاهان دارای فعالیت مهاری قوی. از طریق رسم نمودار درصد مهار بر علیه لگاریتم غلظت و بدست آوردن معادله خط محاسبه شد. نتایج بدست آمده جزییات در جدول شماره 5 آمده است. نظر به فعالیت مهاری چشمگیر و همچنین نشان دهنده قابلیت استفاده گیاه مربوطی بوده، مطالعات سیستمی مهار آنزیمی بر روی عصاره این گیاه انجام شد.

جرت فراهم شدن امکان مقایسه نتایج مهار توسط عصاره‌های گیاهی، فعالیت مهاری کوچک‌کننده بعضاً یک مهارکننده شناخته شده‌توتونیزاس در بنگل غلظت تعیین شد که نتایج آن در جدول شماره 6 آمده است. سپس مقدار آن IC₅₀ به کمک رسم نمودار مطلق شکل شماره 1 محاسبه شد.
بحث

ملاحوت‌یک فراپنت آنتی‌اکسیدان در ملاتوسیت‌ها می‌باشد. ملاتونین توسط فراپنت ملاتونین از طریق واکنش‌های آنتی‌اکسیدان و ترشح‌های آنتی‌اکسیدان می‌تواند کلیدی در مسیر بیولوژی ملاتونین محسوب می‌شود [6]. ابعاد و مختصات سلولی و پوسته خیال که در فراپنت ملاتونین پیش‌رسیده بود، باعث حفاظت پوست در برای اشعه UV می‌شود. نتیجه در فراپنت ملاتونین، باعث ایجاد اختلالات پوستی مربوط به حیات پوستی، مرطوب و حساس تر. پی‌گذاری از مسیر بیولوژی ملاتونین نشان‌دهنده است که بتواند به جلوگیری از بهبود نهایی مراتع بهبود در پوست [66].

با دلیل اهمیت زیبایی و سلامت پوست، مهار آنزیم تیروپنتز برای درمان اختلالات پوستی بسیار مورد توجه گزارش‌هایی است. از ملاحون‌های تیروپنتز علائم بر استفاده‌های دارویی، در لوزوم آزاری و بهداشتی برای میشود. فعالیت ملاتونین در گزارش‌های جهان، تغییرات و سلامت پوست، زمانی که در برای اشعه UV فعالیت‌های اهمیت دارد و از اهداف مهم صابع آزاری و بهداشتی محصول می‌شود. در کشورهای آسیایی مانند هندوستان برای میشود. در کشورهای طور سنتی مورد استفاده [67].

در صنایع آزاری و بهداشتی و صنایع زراعی به دلیل عوارض جانبی ترکیبات شیمیایی و مصنوعی، به دنبال یافتن ترکیبات با مهار نهایی می‌باشد. زیرا استعداد از عصاره‌های گیاهی برای ملاحوت ملاتونین همچنین اهداف صابع آزاری و بهداشتی، عوارض جانبی بسیار پایین نسبت به ترکیبات مصنوعی دارند [68]. به دلیل شکافته‌داری آنتی‌اکسیدان در لوزوم آزاری برای میشود، سبب بسیار بالایی دارد. بسیاری از پژوهش‌ها برای ملاحوت مراتع جهانی بهبود جدید

<table>
<thead>
<tr>
<th>ماده</th>
<th>K<sub>a</sub> (μg/ml)</th>
<th>K<sub>m</sub> (μg/ml)</th>
<th>V<sub>max</sub> (AOD/min<sup>1</sup>)</th>
<th>K<sub>i</sub> (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvia suffruticosa</td>
<td>0.00093</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
</tr>
<tr>
<td>Areca catechu</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
<td>0.00083</td>
</tr>
<tr>
<td>Morus alba</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
<td>0.00083</td>
</tr>
<tr>
<td>Marrubium cuneatum</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
<td>0.00083</td>
</tr>
<tr>
<td>Hypericum scabrum</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
<td>0.00083</td>
</tr>
<tr>
<td>Scrophularia pruinosa</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
<td>0.00083</td>
</tr>
<tr>
<td>Verbascum phoenicum</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
<td>0.00083</td>
</tr>
<tr>
<td>Asperugo procumbens</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
<td>0.00083</td>
</tr>
<tr>
<td>Astragalus silicus (subsp. silicus</td>
<td>0.00026</td>
<td>0.00083</td>
<td>0.0026</td>
<td>0.00083</td>
</tr>
</tbody>
</table>
در این مطالعه به طور کلی از گونه‌ها مانند Salvia suffruticosa و Salvia aethiopis استفاده شده است.

Salvia suffruticosa به دلیل ویژگی‌های فعال که در تحقیقات اخیر به عنوان موارد مورد بررسی قرار گرفته است، به عنوان گونه‌ی مورد استفاده قرار گرفته است.

Salvia aethiopis نیز به دلیل ویژگی‌های فعال و مناسب برای استفاده در تحقیقات به عنوان گونه‌ی مورد استفاده قرار گرفته است.

در این مطالعه به طور کلی از گونه‌های Salvia nemorosa cryptantha و Salvia tomentosa استفاده شده است.

از سال ۱۹۹۰ تاکنون در استادیوم به مطالعه و بررسی داروهای از این گونه‌ها، به ویژه Salvia aethiopis و Salvia tomentosa، توجه می‌شود.

از جمله سایر گونه‌هایی که در این مطالعه به عنوان مصالح به‌کارگرفته شده‌اند می‌توان به Salvia cryptantha و Salvia nemorosa اشاره کرد.

از سال ۲۰۰۹ تاکنون به دستورالعمل بهره‌مندی و تکنیک‌های مصادفه‌ای از این گونه‌ها استفاده می‌شود.

از سال ۲۰۰۷ تاکنون به دستورالعمل بهره‌مندی و تکنیک‌های مصادفه‌ای از این گونه‌ها استفاده می‌شود.

در این مطالعه به دلیل ویژگی‌های فعال و مناسب برای استفاده در تحقیقات به عنوان گونه‌ی مورد استفاده قرار گرفته است.
جستجوی فعالیت مهار کندگی...
نتیجه گیری

بر اساس نتایج به دست آمده در این پژوهش، در میان عصارهای گیاهی که مورد سنجش قرار گرفتند، عصارهای مطلوب Heptapetra Bongardia chrysogonum, Hypericum Hyoscyamus kurdicus anatolica, Nonea hypoleia Marrubium cuneatum scabrum, Scrophularia pruinosa Salvia suffruticosa و Asperugo procumbens Verbascum phoenicum، ژلاتین قابل مقایسه در مطالعات بدن عصارهای جدیدی برای مهارت تروریناز از هدایا داد. هر یک از این گیاهان به ترتیب خود می‌تواند در مدل‌های مختلف مورد استفاده‌ای مناسب باشد. بنابراین همکاران، این نتایج با توجه به نتایج اندازه‌گیری می‌تواند از طریق طب روش‌های درمانی تروریناز ترکیبات را به هدایای عصارهای این گیاهان و به هدایای مهارت تروریناز ایجاد کند. همچنین وجود اجرای آزاد

Study of Mushroom Tyrosinase Inhibitory Activity Among 70 Plants from Kurdistan Provience

Hassani Asrin, Zarei Mohammad Ali*

Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Corresponding author: Department of Biological Sciences, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
Tel: +98 - 87 - 33664600
Email: mazarei@uok.ac.ir

Abstract
Background: Tyrosinase is a multifunctional, glycosylated and copper containing oxidase, and is found in fungi, microorganisms, plants and animals. The most important function of tyrosinase in mammals is melanogenesis. Hyperpigmentation is a serious problem for beauty. It is possible to cure these diseases with inhibition of tyrosinase. There have been attempts to control the metabolism of pigmentation by means of natural chemical agents.
Objective: The aim of this study was to find new potent inhibitors for tyrosinase among plant extracts.
Method: The subject of this study was anti-tyrosinase activity of methanolic extracts of 70 plant species, using mushroom tyrosinase inhibition method. All extracts were screened for their tyrosinase inhibitory activity at 400, 100, 25, 6.2 µg/ml final concentrations in reaction mixture. Assay method was based on spectrophotometric study of absorption in 492 nm and kojic acid was used as positive controls.
Results: The results showed that nine plant extracts including Bongardia chrysogonum (L.) Spach, Podophylaceae, Heptaptera anatolica (Boiss.) Tutin, Apiaceae, Hyoscyamus kurdicus Bornm, Solanaceaes, Hypericum scabrum, Marrubium cuneatum, Nonea hypoleia, Salvia suffruticosa, Scrophularia pruinosa Boiss, Scrophulariaceae and Verbascum phoenicum L, Scrophulariaceae, (400 µg/ml) and two plant extracts including Asperugo procumbens L, Boragineae and Astragalus siliquosus Boiss. subsp. siliquosus, Papilionaceae (25µg/ml) have inhibitory activity more than 60%. Saliva suffruticosa showed a considerable inhibition value, 92.62% (400 µg/ml) and low IC$_{50}$ (94.77 µg/ml) and according to kinetic analysis its type of inhibition on tyrosinase is noncompetitive.
Conclusion: Because of its high inhibitory activity and low IC$_{50}$, Saliva suffruticosa extract would be interesting for further studies.

Keywords: Saliva suffruticosa, Enzyme Inhibition, Hyperpigmentation, Tyrosinase